1.
Numeral system
–
A numeral system is a writing system for expressing numbers, that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. It can be seen as the context that allows the symbols 11 to be interpreted as the symbol for three, the decimal symbol for eleven, or a symbol for other numbers in different bases. The number the numeral represents is called its value, ideally, a numeral system will, Represent a useful set of numbers Give every number represented a unique representation Reflect the algebraic and arithmetic structure of the numbers. For example, the decimal representation of whole numbers gives every nonzero whole number a unique representation as a finite sequence of digits. Etc. all of which have the same meaning except for some scientific, such systems are, however, not the topic of this article. The most commonly used system of numerals is the Hindu–Arabic numeral system, two Indian mathematicians are credited with developing it. Aryabhata of Kusumapura developed the notation in the 5th century. The numeral system and the concept, developed by the Hindus in India, slowly spread to other surrounding countries due to their commercial. The Arabs adopted and modified it, even today, the Arabs call the numerals which they use Rakam Al-Hind or the Hindu numeral system. The Arabs translated Hindu texts on numerology and spread them to the world due to their trade links with them. The Western world modified them and called them the Arabic numerals, hence the current western numeral system is the modified version of the Hindu numeral system developed in India. It also exhibits a great similarity to the Sanskrit–Devanagari notation, which is used in India. The simplest numeral system is the numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the seven would be represented by ///////. Tally marks represent one such system still in common use, the unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is used in data compression. The unary notation can be abbreviated by introducing different symbols for new values. The ancient Egyptian numeral system was of type, and the Roman numeral system was a modification of this idea
2.
Arabic numerals
–
In this numeral system, a sequence of digits such as 975 is read as a single number, using the position of the digit in the sequence to interpret its value. The symbol for zero is the key to the effectiveness of the system, the system was adopted by Arab mathematicians in Baghdad and passed on to the Arabs farther west. There is some evidence to suggest that the numerals in their current form developed from Arabic letters in the Maghreb, the current form of the numerals developed in North Africa, distinct in form from the Indian and eastern Arabic numerals. The use of Arabic numerals spread around the world through European trade, books, the term Arabic numerals is ambiguous. It most commonly refers to the widely used in Europe. Arabic numerals is also the name for the entire family of related numerals of Arabic. It may also be intended to mean the numerals used by Arabs and it would be more appropriate to refer to the Arabic numeral system, where the value of a digit in a number depends on its position. The decimal Hindu–Arabic numeral system was developed in India by AD700, the development was gradual, spanning several centuries, but the decisive step was probably provided by Brahmaguptas formulation of zero as a number in AD628. The system was revolutionary by including zero in positional notation, thereby limiting the number of digits to ten. It is considered an important milestone in the development of mathematics, one may distinguish between this positional system, which is identical throughout the family, and the precise glyphs used to write the numerals, which varied regionally. The glyphs most commonly used in conjunction with the Latin script since early modern times are 0123456789. The first universally accepted inscription containing the use of the 0 glyph in India is first recorded in the 9th century, in an inscription at Gwalior in Central India dated to 870. Numerous Indian documents on copper plates exist, with the symbol for zero in them, dated back as far as the 6th century AD. Inscriptions in Indonesia and Cambodia dating to AD683 have also been found and their work was principally responsible for the diffusion of the Indian system of numeration in the Middle East and the West. In the 10th century, Middle-Eastern mathematicians extended the decimal system to include fractions. The decimal point notation was introduced by Sind ibn Ali, who wrote the earliest treatise on Arabic numerals. Ghubar numerals themselves are probably of Roman origin, some popular myths have argued that the original forms of these symbols indicated their numeric value through the number of angles they contained, but no evidence exists of any such origin. In 825 Al-Khwārizmī wrote a treatise in Arabic, On the Calculation with Hindu Numerals, Algoritmi, the translators rendition of the authors name, gave rise to the word algorithm
3.
Eastern Arabic numerals
–
These numbers are known as أرقام هندية in Arabic. They are sometimes also called Indic numerals in English, however, that is sometimes discouraged as it can lead to confusion with Indian numerals, used in Brahmic scripts of India. Each numeral in the Persian variant has a different Unicode point even if it looks identical to the Eastern Arabic numeral counterpart, however the variants used with Urdu, Sindhi and other South Asian languages are not encoded separately from the Persian variants. See U+0660 through U+0669 and U+06F0 through U+06F9, written numerals are arranged with their lowest-value digit to the right, with higher value positions added to the left. That is identical to the arrangement used by Western texts using Hindu-Arabic numerals even though Arabic script is read from right to left. There is no conflict unless numerical layout is necessary, as is the case for arithmetic problems and lists of numbers, Eastern Arabic numerals remain strongly predominant vis-à-vis Western Arabic numerals in many countries to the East of the Arab world, particularly in Iran and Afghanistan. In Pakistan, Western Arabic numerals are more used as a considerable majority of the population is anglophone. Eastern numerals still continue to see use in Urdu publications and newspapers, in North Africa, only Western Arabic numerals are now commonly used. In medieval times, these used a slightly different set
4.
Indian numerals
–
Indian numerals are the symbols representing numbers in India. These numerals are used in the context of the decimal Hindu–Arabic numeral system. Below is a list of the Indian numerals in their modern Devanagari form, the corresponding Hindu-Arabic equivalents, their Hindi and Sanskrit pronunciation, since Sanskrit is an Indo-European language, it is obvious that the words for numerals closely resemble those of Greek and Latin. The word Shunya for zero was translated into Arabic as صفر sifr, meaning nothing which became the zero in many European languages from Medieval Latin. The five Indian languages that have adapted the Devanagari script to their use also naturally employ the numeral symbols above, of course, for numerals in Tamil language see Tamil numerals. For numerals in Telugu language see Telugu numerals, Tamil and Malayalam scripts also have distinct forms for 10,100,1000 numbers, ௰, ௱, ௲and ൰, ൱, ൲ respectively in tamil and scripts. A decimal place system has been traced back to ca.500 in India, before that epoch, the Brahmi numeral system was in use, that system did not encompass the concept of the place-value of numbers. Instead, Brahmi numerals included additional symbols for the tens, as well as symbols for hundred. The Indian place-system numerals spread to neighboring Persia, where they were picked up by the conquering Arabs, in 662, Severus Sebokht - a Nestorian bishop living in Syria wrote, I will omit all discussion of the science of the Indians. Of their subtle discoveries in astronomy — discoveries that are more ingenious than those of the Greeks, I wish only to say that this computation is done by means of nine signs. But it is in Khmer numerals of modern Cambodia where the first extant material evidence of zero as a numerical figure, as it was from the Arabs that the Europeans learned this system, the Europeans called them Arabic numerals, the Arabs refer to their numerals as Indian numerals. In academic circles they are called the Hindu–Arabic or Indo–Arabic numerals, but what was the net achievement in the field of reckoning, the earliest art practiced by man. An inflexible numeration so crude as to progress well nigh impossible. Man used these devices for thousands of years without contributing an important idea to the system. Even when compared with the growth of ideas during the Dark Ages. When viewed in light, the achievements of the unknown Hindu. Sanskrit Siddham Numbers Karl Menninger, Number Words and Number Symbols - A Cultural History of Numbers ISBN 0-486-27096-3 David Eugene Smith and Louis Charles Karpinski, The Hindu-Arabic Numerals
5.
Sinhala numerals
–
Sinhalese belongs to the Indo-European language family with its roots deeply associated with Indo-Aryan sub family to which the languages such as Persian and Hindi belong. It is also surmised that Sinhala had evolved from an ancient variant of Apabramsa which is known as ‘Elu’, when tracing history of Elu, it was preceded by Hela or Pali Sihala. The Sinhala script had evolved from Southern Brahmi script from which almost all the Southern Indic Scripts such as Telugu, later Sinhala was influenced by Grantha writing of Southern India. Since 1250 AD, the Sinhala script had remained the same with few changes, although some scholars are of the view that the Brahmi Script arrived with the Buddhism, Mahavamsa speaks of written language even right after the arrival of Vijaya. Archeologists had found pottery fragments in Anuradhapura Sri Lanka with older Brahmi script inscriptions, the earliest Brahmi Script found in India had been dated to 6th Century BC in Tamil Nadu though most of Brahmi writing found in India had been attributed to emperor Ashoka in the 3rd century BC. Sinhala letters are round-shaped and are written left to right. The evolution of the script to the present shapes may have taken place due to writing on Ola leaves, unlike chiseling on a rock, writing on palm leaves has to be more round-shaped to avoid the stylus ripping the Palm leaf while writing on it. When drawing vertical or horizontal lines on Ola leaf, the leaves would have been ripped. Instead a stylistic stop which was known as ‘Kundaliya’ is used, period and commas were later introduced into Sinhala script after the introduction of paper due to the influence of Western languages. In modern Sinhala, Arabic numerals, which were introduced by Portuguese, Dutch and English, is used for writing numbers and it is accepted that Arabic numerals had evolved from Brahmi numerals. This article will touch upon Brahmi numerals, which were found in Sri Lanka. It had been found five different types of numerations were used in the Sinhala language at the time of the invasion of the Kandyan kingdom by the British. Out of the five types of numerations, two sets of numerations were in use in the century mainly for astrological calculations and to express traditional year. The five types or sets of numerals or numerations are listed below, according to Mr. Gunesekera, these numerals were used for ordinary calculations and to express simple numbers. These numerals had separate Symbols for 10,40,50,100,1000 and these numerals were also regarded as Lith Lakunu or ephemeris numbers by W. A. De Silva in his “Catalogue of Palm leaf manuscripts in the library of Colombo Museum”. This set of numerals was known as Sinhala illakkam or Sinhala archaic numerals, Arabic Figures are now universally used. For the benefit of the student, the old numerals are given in the plate opposite,11 clauses had been numbered in Arabic numerals in the English part of the agreement and in parallel Sinhala clauses were numbered in Sinhala archaic numerals. Numbers of lith illakkam look Sinhala letters and vowel modifiers, the number six is known as ‘akma’ in the Lith Illakkam
6.
Tamil numerals
–
Traditionally Vattezhuttu characters were used, but now Arabic numerals have become commonplace. Old Tamil possesses a special character for zero and it is read as andru. But yet Modern Tamil renounces the use of its native character, Modern Tamil words for zero include சுழியம் or பூச்சியம். Tamil has a prefix for each number from 1 to 9. For instance, the word for fifty, ஐம்பது is a combination of ஐ, the prefix for nine changes with respect to the succeeding base 10. தொ+ the unvoiced consonant of the succeeding base 10 forms the prefix for nine, for instance,90 is தொ+ண், hence, தொண்ணூறு). These are typically void in the Tamil language except for some Hindu and Christian religious references, example அட்ட இலட்சுமிகள் in a Hindu context, unlike other Indian languages, Tamil has distinct digits for 10,100, and 1000. It also has characters for other number-based aspects of day-to-day life. − − − − − − − − − − − − There are two systems that can be used in the Tamil language, the Tamil system which is as follows. The following are the numbers of the Ancient Tamil Country. Sanskrit based multiples like lakhs are also followed just like other Indian languages and you can transcribe any fraction, by affixing -இல் after the denominator followed by the numerator. For instance, 1/41 can be said as நாற்பத்து ஒன்றில் ஒன்று, the suffixing of the -இல் requires you to change the last consonant of the number to its இ form. For example, மூன்று+இல் becomes மூன்றில், note the உ has been omitted, common fractions have names already allocated to them, hence, these names are often used rather than the above method. Other fractions are, Anu was considered as lowest fraction by ancient Tamils as size of smallest physical object, later, this term went to Sanskrit to refer directly atom. Decimal point is called புள்ளி in Tamil, for example,1.1 would be read as ஒன்று புள்ளி ஒன்று. Percentage is known as விழுக்காடு in Tamil or சதவீதம் and these words are simply added after a number to form percentages. For instance, four percent is நான்கு சதவீதம் or நான்கு விழுக்காடு, percentage symbol is also recognised and used. Ordinal numbers are formed by adding the suffix -ஆம் after the number, as always, when blending two words into one, an unvoiced form of the consonant as the one that the second starts with, is placed in between to blend
7.
Balinese numerals
–
The Balinese language has an elaborate decimal numeral system. The numerals 1–10 have basic, combining, and independent forms, the combining forms are used to form higher numbers. In some cases there is more than one word for a numeral, reflecting the Balinese register system, final orthographic -a is a schwa. * A less productive combining form of a-1 is sa- and it, ulung-, and sangang- are from Javanese. Dasa 10 is from Sankrit désa, like English, Balinese has compound forms for the teens and tens, however, it also has a series of compound tweens, 21–29. The teens are based on a root *-welas, the tweens on -likur, hyphens are not used in the orthography, but have been added to the table below to clarify their derivation. The high-register combining forms kalih-2 and tigang-3 are used with -likur, -dasa, and higher numerals, the teens are from Javanese, where the -olas forms are regular, apart from pele-kutus 18, which is suppletive. Sa-laé25, and se-ket 50 are also suppletive, and cognate with Javanese səlawé25, there are additional numerals pasasur ~ sasur 35 and se-timahan ~ se-timan 45, and a compound telung-benang for 75. The unit combining forms are combined with atus 100, atak 200, amas 400, tali 1000, laksa 10,000, keti 100,000, in addition, there is karobelah 150, lebak 175, and sepa for 1600. At least karobelah has a cognate in Javanese, ro-bəlah, where ro- is the form for two
8.
Burmese numerals
–
Burmese numerals are a set of numerals traditionally used in the Burmese language, although the Arabic numerals are also used. Burmese numerals follow the Hindu-Arabic numeral system used in the rest of the world. 1 Burmese for zero comes from Sanskrit śūnya.2 Can be abbreviated to IPA, in list contexts, spoken Burmese has innate pronunciation rules that govern numbers when they are combined with another word, be it a numerical place or a measure word. Other suffixes such as ထောင်, သောင်း, သိန်း, and သန်း all shift to, for six and eight, no pronunciation shift occurs. These pronunciation shifts are exclusively confined to spoken Burmese and are not spelt any differently,1 Shifts to voiced consonant following three, four, five, and nine. Ten to nineteen are almost always expressed without including တစ်, another pronunciation rule shifts numerical place name from the low tone to the creaky tone. Number places from 10 up to 107 has increment of 101, beyond those Number places, larger number places have increment of 107. 1014 up to 10140 has increment of 107, numbers in the hundreds place, shift from ရာ to ရာ့, except for numbers divisible by 100. Numbers in the place, shift from ထောင် to ထောင့်. Hence, a number like 301 is pronounced, while 300 is pronounced, the digits of a number are expressed in order of decreasing digits place. When a number is used as an adjective, the word order is. However, for numbers, the word order is flipped to. The exception to rule is the number 10, which follows the standard word order. Ordinal numbers, from first to tenth, are Burmese pronunciations of their Pali equivalents and they are prefixed to the noun. Beyond that, cardinal numbers can be raised to the ordinal by suffixing the particle မြောက် to the number in the order, number + measure word + မြောက်. Colloquially, decimal numbers are formed by saying ဒသမ where the separator is located. For example,10.1 is ဆယ် ဒသမ တစ်, half is expressed primarily by တစ်ဝက်, although ထက်ဝက်, အခွဲ and အခြမ်း are also used. Quarter is expressed with အစိတ် or တစ်စိတ်, other fractional numbers are verbally expressed as follows, denominator + ပုံ + numerator + ပုံ
9.
Dzongkha numerals
–
Dzongkha, the national language of Bhutan, has two numeral systems, one vigesimal, and a modern decimal system. The vigesimal system remains in robust use, ten is an auxiliary base, the teens are formed with ten and the numerals 1–9. *When it appears on its own, ten is usually said cu-tʰãm a full ten, in combinations it is simply cu. Factors of 20 are formed from kʰe, intermediate factors of ten are formed with pɟʱe-da half to,400 ɲiɕu is the next unit, ɲiɕu ciː400, ɲiɕu ɲi 800, etc. Higher powers are 8000 kʰecʰe and jãːcʰe 160,000, the decimal system is the same as the vigesimal system up to 19. Then decades, however, are formed as unit–ten, as in Chinese,20 is reported to be ɲiɕu, the vigesimal numeral 400, this may be lexical interference for the expected *ɲi-cu. Mazaudon & Lacito,2002, Les principes de construction du nombre dans les langues tibeto-birmanes, in François, ed
10.
Gujarati numerals
–
Gujarati numerals is the numeral system of the Gujarati script of South Asia, which is a derivative of Devanagari numerals. It is the numeral system of Gujarat, India. It is also recognized in India and as a minor script in Pakistan. The following table shows Gujarati numbers and the Gujarati word for each of them in various scripts, Gujarati script Gurmukhi numerals Devanagari alphabet
11.
Javanese numerals
–
The Javanese language has a decimal numeral system with distinct words for the tweens from 21 to 29, called likuran. The basic numerals 1–10 have independent and combining forms, the latter derived via a suffix -ng, the combining forms are used to form the tens, hundreds, thousands, and millions. The numerals 1–5 and 10 have distinct high-register and low register forms, the halus forms are listed below in italics. Like English, Javanese has compound forms for the teens, however, it also has a series of compound tweens, the teens are based on a root -las, the tweens on -likur, and the tens are formed by the combining forms. Hyphens are not used in the orthography, but have added to the table below to clarify their derivation. Final orthographic -a tends to in many dialects, as does any preceding a, parallel to the tens are the hundreds, the thousands, and the millions, except that the compounds of five and six are formed with limang- and nem-. The names of the Old Javanese numerals were derived from their names in the Sanskrit language, balinese numerals, a related but yet more complex numeral system
12.
Khmer numerals
–
Khmer numerals are the numerals used in the Khmer language. They have been in use since at least the early 7th century, with the earliest known use being on a stele dated to AD604 found in Prasat Bayang, Cambodia, having been derived from the Hindu numerals, modern Khmer numerals also represent a decimal positional notation system. It is the script with the first extant material evidence of zero as a figure, dating its use back to the seventh century. However, Old Khmer, or Angkorian Khmer, also possessed separate symbols for the numbers 10,20 and this inconsistency with its decimal system suggests that spoken Angkorian Khmer used a vigesimal system. For example,6 is formed from 5 plus 1, with the exception of the number 0, which stems from Sanskrit, the etymology of the Khmer numbers from 1 to 5 is of proto-Mon–Khmer origin. For details of the various alternative romanization systems, see Romanization of Khmer, some authors may alternatively mark as the pronunciation for the word two, and either or for the word three. In neighbouring Thailand the number three is thought to bring good luck, however, in Cambodia, taking a picture with three people in it is considered bad luck, as it is believed that the person situated in the middle will die an early death. As mentioned above, the numbers from 6 to 9 may be constructed by adding any number between 1 and 4 to the base number 5, so that 7 is literally constructed as 5 plus 2. Beyond that, Khmer uses a base, so that 14 is constructed as 10 plus 4, rather than 2 times 5 plus 4. In constructions from 6 to 9 that use 5 as a base, /pram/ may alternatively be pronounced, giving and this is especially true in dialects which elide /r/, but not necessarily restricted to them, as the pattern also follows Khmers minor syllable pattern. The numbers from thirty to ninety in Khmer bear many resemblances to both the modern Thai and Cantonese numbers, informally, a speaker may choose to omit the final and the number is still understood. For example, it is possible to say instead of the full, Language Comparisons, Words in parenthesis indicate literary pronunciations, while words preceded with an asterisk mark are non-productive. The standard Khmer numbers starting from one hundred are as follows, Although មួយកោដិ is most commonly used to mean ten million, in some areas this is also colloquially used to refer to one billion. In order to avoid confusion, sometimes ដប់លាន is used to mean ten million, along with មួយរយលាន for one hundred million, different Cambodian dialects may also employ different base number constructions to form greater numbers above one thousand. As a result of prolonged literary influence from both the Sanskrit and Pali languages, Khmer may occasionally use borrowed words for counting. One reason for the decline of numbers is that a Khmer nationalism movement. The Khmer Rouge also attempted to cleanse the language by removing all words which were considered politically incorrect, Khmer ordinal numbers are formed by placing the word ទី in front of a cardinal number. This is similar to the use of ที่ thi in Thai and it is generally assumed that the Angkorian and pre-Angkorian numbers also represented a dual base system, with both base 5 and base 20 in use
13.
Lao alphabet
–
Lao script, or Akson Lao, is the primary script used to write the Lao language and other minority languages in Laos. It was also used to write the Isan language, but was replaced by the Thai script and it has 27 consonants,7 consonantal ligatures,33 vowels, and 4 tone marks. Akson Lao is a system to the Thai script, with which it shares many similarities. However, Lao has fewer characters and is formed in a curvilinear fashion than Thai. Lao is traditionally written from left to right, Lao is considered an abugida, in which certain implied vowels are unwritten. However, due to spelling reforms by the communist Lao Peoples Revolutionary Party, despite this, most Lao outside of Laos, and many inside Laos, continue to write according to former spelling standards, so vernacular Lao functions as a pure abugida. For example, the old spelling of ສເລີມ to hold a ceremony, vowels can be written above, below, in front of, or behind consonants, with some vowel combinations written before, over and after. Spaces for separating words and punctuation were traditionally not used, but a space is used, the letters have no majuscule or minuscule differentiation. The Lao script was standardized in the Mekong River valley after the various Tai principalities of the region were merged under Lan Xang in the 14th century. This script, sometimes known as Tai Noi, has changed little since its inception and continued use in the Lao-speaking regions of modern-day Laos, conversely, the Thai alphabet continued to evolve, but the scripts still share similarities. This script was derived locally from the Khmer script of Angkor with additional influence from Mon, traditionally, only secular literature were written with the Lao alphabet. Religious literature was written in Tua Tham, a Mon-based script that is still used for the Tai Khün, Tai Lue. Mystical, magical, and some literature was written in a modified version of the Khmer alphabet. Essentially Thai and Lao are almost typographic variants of other just as in the Javanese and Balinese scripts. The Lao and Thai alphabets share the same roots, but Lao has fewer characters and is written in a curvilinear fashion than Thai. However this is apparent today due to the communist party simplifying the spelling to be phonetic. There is speculation that the Lao and Thai script both derive from a common script due to the similarities between the scripts. When examining older forms of Thai scripts, many letters are almost identical to the Lao alphabet, some minority languages use separate writing systems, The Hmong have adopted the Roman Alphabet
14.
Thai numerals
–
The Thai language lacks grammatical number. A count is expressed in the form of an uninflected noun followed by a number. In Thai, counting is kannap, the classifier, laksananam Variations to this pattern do occur, a partial list of Thai words that also classify nouns can be found in Wiktionary category, Thai classifiers. Thai sūn is written as oval 0 when using Arabic numerals, but a small circle ๐ when using traditional numerals and it is from Sanskrit śūnya, as are the alternate names for numbers one to four given below, but not the counting 1. Thai names for N +1 and the regular digits 2 through 9 as shown in the table, below, resemble those in Chinese varieties as spoken in Southern China, Thai and Lao words for numerals are almost identical, however, the numerical digits vary somewhat in shape. Shown below is a comparison between three languages using Cantonese and Minnan characters and pronunciations, the Thai transliteration uses the Royal Thai General System of Transcription. Sanskrit lakh designates the place value of a digit, which are named for the powers of ten, the place is lak nuai, tens place, lak sip, hundreds place, lak roi. The number one following any multiple of sip becomes et, the number ten is the same as Minnan 十. Numbers from twenty to twenty nine begin with yi sip, names of the lak sip for 30 to 90, and for the lak of 100,1000,10,000,100,000 and million, are almost identical to those of the like Khmer numerals. For the numbers twenty-one through twenty-nine, the part signifying twenty, yi sip, see the alternate numbers section below. The hundreds are formed by combining roi with the tens and ones values, for example, two hundred and thirty-two is song roi sam sip song. The words roi, phan, muen, and saen should occur with a preceding numeral, nueng never precedes sip, so song roi nueng sip is incorrect. Native speakers will sometimes use roi nueng with different tones on nueng to distinguish one hundred from one hundred, however, such distinction is often not made, and ambiguity may follow. To resolve this problem, if the number 101 is intended, numbers above a million are constructed by prefixing lan with a multiplier. For example, ten million is sip lan, and a trillion is lan lan, colloquially, decimal numbers are formed by saying chut where the decimal separator is located. For example,1.01 is nueng chut sun nueng, fractional numbers are formed by placing nai between the numerator and denominator or using x suan y to clearly indicate. For example, ⅓ is nueng nai sam or nueng suan sam, the word set can be omitted. The word khrueng is used for half and it precedes the measure word if used alone, but it follows the measure word when used with another number
15.
Chinese numerals
–
Chinese numerals are words and characters used to denote numbers in Chinese. Today speakers of Chinese use three written numeral systems, the system of Arabic numerals used worldwide, and two indigenous systems, the more familiar indigenous system is based on Chinese characters that correspond to numerals in the spoken language. These are shared with languages of the Chinese cultural sphere such as Japanese, Korean. The other indigenous system is the Suzhou numerals, or huama, a positional system and these were once used by Chinese mathematicians, and later in Chinese markets, such as those in Hong Kong before the 1990s, but have been gradually supplanted by Arabic numerals. The Chinese character numeral system consists of the Chinese characters used by the Chinese written language to write spoken numerals, similar to spelling-out numbers in English, it is not an independent system per se. Since it reflects spoken language, it not use the positional system as in Arabic numerals. There are characters representing the numbers zero through nine, and other characters representing larger numbers such as tens, hundreds, thousands, there are two sets of characters for Chinese numerals, one for everyday writing and one for use in commercial or financial contexts known as dàxiě. A forger could easily change the everyday characters 三十 to 五千 just by adding a few strokes and that would not be possible when writing using the financial characters 參拾 and 伍仟. They are also referred to as bankers numerals, anti-fraud numerals, for the same reason, rod numerals were never used in commercial records. T denotes Traditional Chinese characters, S denotes Simplified Chinese characters, in the PLA, some numbers will have altered names when used for clearer radio communications. They are,0, renamed 洞 lit, hole 1, renamed 幺 lit. small 2, renamed 两 lit. Double 7, renamed 拐 lit. cane, kidnap, turn 9, hook For numbers larger than 10,000, similarly to the long and short scales in the West, there have been four systems in ancient and modern usage. The original one, with names for all powers of ten up to the 14th, is ascribed to the Yellow Emperor in the 6th century book by Zhen Luan. To avoid problems arising from the ambiguity, the PRC government never uses this character in official documents, the ROC government in Taiwan uses 兆 to mean 1012 in official documents. Numerals beyond 載 zài come from Buddhist texts in Sanskrit, but are found in ancient texts. Some of the words are still being used today. The following are characters used to denote small order of magnitude in Chinese historically, with the introduction of SI units, some of them have been incorporated as SI prefixes, while the rest have fallen into disuse. In the Peoples Republic of China, the translations for the SI prefixes in 1981 were different from those used today, the Republic of China defined 百萬 as the translation for mega
16.
Suzhou numerals
–
The Suzhou numerals, also known as Suzhou mazi or huama, is a numeral system used in China before the introduction of Arabic numerals. The Suzhou numeral system is the only surviving variation of the rod numeral system, the rod numeral system is a positional numeral system used by the Chinese in mathematics. Suzhou numerals are a variation of the Southern Song rod numerals, Suzhou numerals were used as shorthand in number-intensive areas of commerce such as accounting and bookkeeping. At the same time, standard Chinese numerals were used in formal writing, Suzhou numerals were once popular in Chinese marketplaces, such as those in Hong Kong along with local transportation before the 1990s, but they have gradually been supplanted by Arabic numerals. This is similar to what had happened in Europe with Roman numerals used in ancient and medieval Europe for mathematics, nowadays, the Suzhou numeral system is only used for displaying prices in Chinese markets or on traditional handwritten invoices. In the Suzhou numeral system, special symbols are used for digits instead of the Chinese characters, the digits of the Suzhou numerals are defined between U+3021 and U+3029 in Unicode. An additional three code points starting from U+3038 were added later, the numbers one, two, and three are all represented by vertical bars. This can cause confusion when they next to each other. Standard Chinese ideographs are often used in this situation to avoid ambiguity, for example,21 is written as 〢一 instead of 〢〡 which can be confused with 3. The first character of such sequences is usually represented by the Suzhou numeral, the full numerical notations are written in two lines to indicate numerical value, order of magnitude, and unit of measurement. Following the rod system, the digits of the Suzhou numerals are always written horizontally from left to right. The first line contains the values, in this example. The second line consists of Chinese characters that represents the order of magnitude, in this case 十元 which stands for ten yuan. When put together, it is read as 40.22 yuan. Zero is represented by the character for zero, leading and trailing zeros are unnecessary in this system. This is very similar to the scientific notation for floating point numbers where the significant digits are represented in the mantissa. Also, the unit of measurement, with the first digit indicator, is aligned to the middle of the numbers row. In the Unicode standard version 3.0, these characters are incorrectly named Hangzhou style numerals, in the episode The Blind Banker of the 2010 BBC television series Sherlock, Sherlock Holmes erroneously refers to the number system as Hangzhou instead of the correct Suzhou
17.
Japanese numerals
–
The system of Japanese numerals is the system of number names used in the Japanese language. The Japanese numerals in writing are based on the Chinese numerals. Two sets of pronunciations for the numerals exist in Japanese, one is based on Sino-Japanese readings of the Chinese characters, there are two ways of writing the numbers in Japanese, in Hindu-Arabic numerals or in Chinese numerals. The Hindu-Arabic numerals are often used in horizontal writing. Numerals with multiple On readings use the Go-on and Kan-on variants respectively, * The special reading 〇 maru is also found. It may be used when reading individual digits of a number one after another. A popular example is the famous 109 store in Shibuya, Tokyo which is read as ichi-maru-kyū and this usage of maru for numerical 0 is similar to reading numeral 0 in English as oh. However, as a number, it is written as 0 or rei. Additionally, two and five are pronounced with a vowel in phone numbers Starting at 万, numbers begin with 一 if no digit would otherwise precede. That is,100 is just 百 hyaku, and 1000 is just 千 sen and this differs from Chinese as numbers begin with 一 if no digit would otherwise precede starting at 百. And, if 千 sen directly precedes the name of powers of myriad, 一 ichi is normally attached before 千 sen and that is,10,000,000 is normally read as 一千万 issenman. But if 千 sen does not directly precede the name of powers of myriad or if numbers are lower than 2,000 and that is,15,000,000 is read as 千五百万 sengohyakuman or 一千五百万 issengohyakuman, and 1,500 as 千五百 sengohyaku or 一千五百 issengohyaku. The numbers 4 and 9 are considered unlucky in Japanese,4, pronounced shi, is a homophone for death,9, the number 13 is sometimes considered unlucky, though this is a carryover from Western tradition. On the contrary, numbers 7 and sometimes 8 are considered lucky in Japanese, in modern Japanese, cardinal numbers are given the on readings except 4 and 7, which are called yon and nana respectively. Alternate readings are used in names, day-of-month names. For instance, the decimal fraction 4.79 is always read yon-ten nana kyū, though April, July, and September are called shi-gatsu, shichi-gatsu, the on readings are also used when shouting out headcounts. Intermediate numbers are made by combining elements, Tens from 20 to 90 are -jū as in 二十 to 九十. Hundreds from 200 to 900 are -hyaku, thousands from 2000 to 9000 are -sen
18.
Korean numerals
–
The Korean language has two regularly used sets of numerals, a native Korean system and Sino-Korean system. For both native and Sino- Korean numerals, the teens are represented by a combination of tens, for instance,15 would be sib-o, but not usually il-sib-o in the Sino-Korean system, and yeol-daseot in native Korean. Twenty through ninety are likewise represented in this manner in the Sino-Korean system, while Native Korean has its own unique set of words. The grouping of large numbers in Korean follow the Chinese tradition of myriads rather than thousands, the Sino-Korean system is nearly entirely based on the Chinese numerals. The distinction between the two systems is very important. Everything that can be counted will use one of the two systems, but seldom both, Sino-Korean words are sometimes used to mark ordinal usage, yeol beon means ten times while sip beon means number ten. When denoting the age of a person, one will usually use sal for the native Korean numerals, for example, seumul-daseot sal and i-sib-o se both mean twenty-five-year-old. See also East Asian age reckoning, the Sino-Korean numerals are used to denote the minute of time. For example, sam-sib-o bun means __,35 or thirty-five minutes, the native Korean numerals are used for the hours in the 12-hour system and for the hours 0,00 to 12,00 in the 24-hour system. The hours 13,00 to 24,00 in the 24-hour system are denoted using both the native Korean numerals and the Sino-Korean numerals. For example, se si means 03,00 or 3,00 a. m. /p. m. for counting above 100, Sino-Korean words are used, sometimes in combination,101 can be baek-hana or baeg-il. The usual liaison and consonant-tensing rules apply, so for example, 예순여섯 yesun-yeoseot is pronounced like, beon, ho, cha, and hoe are always used with Sino-Korean or Arabic ordinal numerals. For example, Yihoseon is Line Number Two in a subway system. 906호 is Apt #906 in a mailing address,906 without ho is not used in spoken Korean to imply apartment number or office suite number. The special prefix je is usually used in combination with suffixes to designate a specific event in sequential things such as the Olympics, in commerce or the financial sector, some hanja for each Sino-Korean numbers are replaced by alternative ones to prevent ambiguity or retouching. For verbally communicating number sequences such as numbers, ID numbers, etc. especially over the phone. For the same reason, military transmissions are known to use mixed native Korean and Sino-Korean numerals, note 1, ^ Korean assimilation rules apply as if the underlying form were 십륙 |sip. ryuk|, giving sim-nyuk instead of the expected sib-yuk. Note 2, ^ ^ ^ ^ ^ These names are considered archaic, note 3, ^ ^ ^ ^ ^ ^ ^ The numbers higher than 1020 are not usually used
19.
Vietnamese numerals
–
Historically Vietnamese has two sets of numbers, one is etymologically native Vietnamese, the other uses Sino-Vietnamese vocabulary. In the modern language the native Vietnamese vocabulary is used for both everyday counting and mathematical purposes, the Sino-Vietnamese vocabulary is used only in fixed expressions or in Sino-Vietnamese words. This is somewhat analogous to the way in which Latin and Greek numerals are used in modern English, Sino-Vietnamese words are also used for units of ten thousand or above, where native vocabulary was lacking. Among the languages of the Chinese cultural sphere, Japanese and Korean both use two systems, one native and one Chinese-based. The Chinese-based vocabulary is the one in common use, in Vietnamese, on the other hand, the Chinese-based system is not in everyday use. Numbers from 1 to 1000 are expressed using native Vietnamese vocabulary, in the modern Vietnamese writing system, numbers are written in the romanized script quốc ngữ or Arabic numerals. Prior to the 20th century Vietnam officially used Classical Chinese as a written language, for non-official purposes Vietnamese also had a writing system known as Hán-Nôm. Under this system, Sino-Vietnamese numbers were written in Hán tự, basic features of the Vietnamese numbering system include the following, Unlike other sinoxenic numbering systems, Vietnamese separates place values in thousands rather than myriads. The Sino-Vietnamese numbers are not in frequent use in modern Vietnamese, number values for these words follow usage in Ancient China, with each numeral increasing tenfold in digit value, 億 being the number for 105, 兆 for 106, et cetera. As a result, the value of triệu differs from modern Chinese 兆, outside of fixed Sino-Vietnamese expressions, Sino-Vietnamese words are usually used in combination with native Vietnamese words. For instance, mười triệu combines native mười and Sino-Vietnamese triệu, the following table is an overview of the basic Vietnamese numeric figures, provided in both Native and Sino-Viet forms. For each number, the form that is commonly used is highlighted. Where there are differences between the Hanoi and Saigon dialects of Vietnamese, readings between each are differentiated below within the notes, when the number 1 appears after 20 in the unit digit, the pronunciation changes to mốt. When the number 4 appears after 20 in the digit, it is more common to use Sino-Viet tư／四. When the number 5 appears after 10 in the unit digit, when mười appears after 20, the pronunciation changes to mươi. Vietnamese ordinal numbers are preceded by the prefix thứ, which is a Sino-Viet word which corresponds to 次. For the ordinal numbers of one and four, the Sino-Viet readings nhất／一 and tư／四 are more commonly used, in all other cases, the native Vietnamese number is used. Chinese numerals Japanese numerals Korean numerals
20.
Counting rods
–
Counting rods are small bars, typically 3–14 cm long, that were used by mathematicians for calculation in ancient China, Japan, Korea, and Vietnam. They are placed horizontally or vertically to represent any integer or rational number. The written forms based on them are called rod numerals and they are a true positional numeral system with digits for 1–9 and a blank for 0, from the Warring states period to the 16th century. Counting rods were used by ancient Chinese for more two thousand years. In 1954, forty-odd counting rods of the Warring States period were found in Zuǒjiāgōngshān Chu Grave No.15 in Changsha, in 1973, archeologists unearthed a number of wood scripts from a Han dynasty tomb in Hubei. On one of the scripts was written, “当利二月定算”. This is one of the earliest examples of using counting rod numerals in writing, in 1976, a bundle of Western Han counting rods made of bones was unearthed from Qianyang County in Shaanxi. The use of counting rods must predate it, Laozi said a good calculator doesnt use counting rods, the Book of Han recorded, they calculate with bamboo, diameter one fen, length six cun, arranged into a hexagonal bundle of two hundred seventy one pieces. At first calculating rods were round in section, but by the time of the Sui dynasty triangular rods were used to represent positive numbers. After the abacus flourished, counting rods were abandoned except in Japan, counting rods represent digits by the number of rods, and the perpendicular rod represents five. To avoid confusion, vertical and horizontal forms are alternately used, generally, vertical rod numbers are used for the position for the units, hundreds, ten thousands, etc. while horizontal rod numbers are used for the tens, thousands, hundred thousands etc. It is written in Sunzi Suanjing that one is vertical, ten is horizontal, red rods represent positive numbers and black rods represent negative numbers. Ancient Chinese clearly understood negative numbers and zero, though they had no symbol for the latter, later, a go stone was sometimes used to represent zero. This alternation of vertical and horizontal rod numeral form is important to understanding written transcription of rod numerals on manuscripts correctly. In the same manuscript,405 was transcribed as, with a space in between for obvious reasons, and could in no way be interpreted as 45. In other words, transcribed rod numerals may not be positional, the value of a number depends on its physical position on the counting board. A9 at the rightmost position on the stands for 9. Moving the batch of rods representing 9 to the one position gives 9 or 90
21.
Abjad numerals
–
The Abjad numerals are a decimal numeral system in which the 28 letters of the Arabic alphabet are assigned numerical values. They have been used in the Arabic-speaking world since before the century when Arabic numerals were adopted. In modern Arabic, the word abjadīyah means alphabet in general, in the Abjad system, the first letter of the Arabic alphabet, alif, is used to represent 1, the second letter, bāʾ, is used to represent 2, etc. Individual letters also represent 10s and 100s, yāʾ for 10, kāf for 20, qāf for 100, the word abjad itself derives from the first four letters in the Phoenician alphabet, Aramaic alphabet, Hebrew alphabet and other scripts for Semitic languages. These older alphabets contained only 22 letters, stopping at taw, the Arabic Abjad system continues at this point with letters not found in other alphabets, ṯāʾ=500, etc. The Abjad order of the Arabic alphabet has two different variants. Loss of samekh was compensated for by the split of shin ש into two independent Arabic letters, ش and ﺱ, which moved up to take the place of samekh. The most common Abjad sequence, read right to left, is, This is commonly vocalized as follows. Before the introduction of the Hindu–Arabic numeral system, the numbers were used for all mathematical purposes. In modern Arabic, they are used for numbering outlines, items in lists. In English, points of information are sometimes referred to as A, B, and C, the abjad numbers are also used to assign numerical values to Arabic words for purposes of numerology. The common Islamic phrase بسم الله الرحمن الرحيم bismillāh al-Raḥmān al-Raḥīm has a value of 786. The name Allāh الله by itself has the value 66, a few of the numerical values are different in the alternative Abjad order. For four Persian letters these values are used, The Abjad numerals are equivalent to the earlier Hebrew numerals up to 400, the Hebrew numeral system is known as Gematria and is used in Kabbalistic texts and numerology. Like the Abjad order, it is used in times for numbering outlines and points of information. The Greek numerals differ in a number of ways from the Abjad ones, the Greek language system of letters-as-numbers is called isopsephy
22.
Armenian numerals
–
The system of Armenian numerals is a historic numeral system created using the majuscules of the Armenian alphabet. There was no notation for zero in the old system, the principles behind this system are the same as for the Ancient Greek numerals and Hebrew numerals. In modern Armenia, the familiar Arabic numerals are used, Armenian numerals are used more or less like Roman numerals in modern English, e. g. Գարեգին Բ. means Garegin II and Գ. Since not all browsers can render Unicode Armenian letters, the transliteration is given. The final two letters of the Armenian alphabet, o and fe were added to the Armenian alphabet only after Arabic numerals were already in use, thus, they do not have a numerical value assigned to them. Numbers in the Armenian numeral system are obtained by simple addition, although the order of the numerals is irrelevant since only addition is performed, the convention is to write them in decreasing order of value. This is done by drawing a line over them, indicating their value is to be multiplied by 10000, Ա =10000 Ջ =9000000 ՌՃԽԳՌՄԾԵ =11431255
23.
Cyrillic numerals
–
Cyrillic numerals are a numeral system derived from the Cyrillic script, developed in the First Bulgarian Empire in the late 10th century. It was used in the First Bulgarian Empire and by South, the system was used in Russia as late as the early 18th century, when Peter the Great replaced it with Arabic numerals as part of his civil script reform initiative. By 1725, Russian Imperial coins had transitioned to Arabic numerals, the Cyrillic numerals may still be found in books written in the Church Slavonic language. The system is an alphabetic system, equivalent to the Ionian numeral system. The order is based on the original Greek alphabet rather than the standard Cyrillic alphabetical order, a separate letter is assigned to each unit, each multiple of ten, and each multiple of one hundred. To distinguish numbers from text, a titlo is drawn over the numbers. Examples, –1706 –7118 To evaluate a Cyrillic number, the values of all the figures are added up, for example, ѰЗ is 700 +7, making 707. If the number is greater than 999, the sign is used to multiply the numbers value, for example, ҂Ѕ is 6000, while ҂Л҂В is parsed as 30,000 +2000. To produce larger numbers, a sign is used to encircle the number being multiplied. Glagolitic numerals are similar to Cyrillic numerals except that values are assigned according to the native alphabetic order of the Glagolitic alphabet. Glyphs for the ones, tens, and hundreds values are combined to form more precise numbers, for example, ⰗⰑⰂ is 500 +80 +3 or 583. As with Cyrillic numerals, the numbers 11 through 19 are typically written with the ones digit before the glyph for 10, for example ⰅⰊ is 6 +10, early Cyrillic alphabet Glagolitic alphabet Relationship of Cyrillic and Glagolitic scripts Greek numerals Combining Cyrillic Millions
24.
Ge'ez script
–
Geez is a script used as an abugida for several languages of Ethiopia and Eritrea. It originated as an abjad and was first used to write Geez, now the language of the Ethiopian Orthodox Tewahedo Church. In Amharic and Tigrinya, the script is often called fidäl, the Geez script has been adapted to write other, mostly Semitic, languages, particularly Amharic in Ethiopia, and Tigrinya in both Eritrea and Ethiopia. It is also used for Sebatbeit, Meen, and most other languages of Ethiopia, in Eritrea it is used for Tigre, and it has traditionally been used for Blin, a Cushitic language. Tigre, spoken in western and northern Eritrea, is considered to resemble Geez more than do the other derivative languages, some other languages in the Horn of Africa, such as Oromo, used to be written using Geez, but have migrated to Latin-based orthographies. For the representation of sounds, this uses a system that is common among linguists who work on Ethiopian Semitic languages. This differs somewhat from the conventions of the International Phonetic Alphabet, see the articles on the individual languages for information on the pronunciation. The earliest inscriptions of Semitic languages in Eritrea and Ethiopia date to the 9th century BC in Epigraphic South Arabian, after the 7th and 6th centuries BC, however, variants of the script arose, evolving in the direction of the Geez abugida. This evolution can be seen most clearly in evidence from inscriptions in Tigray region in northern Ethiopia, at least one of Wazebas coins from the late 3rd or early 4th century contains a vocalized letter, some 30 or so years before Ezana. It has been argued that the marking pattern of the script reflects a South Asian system. On the other hand, emphatic P̣ait ጰ, a Geez innovation, is a modification of Ṣädai ጸ, while Pesa ፐ is based on Tawe ተ. Thus, there are 24 correspondences of Geez and the South Arabian alphabet, Many of the names are cognate with those of Phoenician. Two alphabets were used to write the Geez language, an abjad and later an abugida. The abjad, used until c.330 AD, had 26 consonantal letters, h, l, ḥ, m, ś, r, s, ḳ, b, t, ḫ, n, ʾ, k, w, ʿ, z, y, d, g, ṭ, p̣, ṣ, ṣ́, f, p Vowels were not indicated. Modern Geez is written left to right. The Geez abugida developed under the influence of Christian scripture by adding obligatory vocalic diacritics to the consonantal letters. The diacritics for the vowels, u, i, a, e, ə, o, were fused with the consonants in a recognizable but slightly irregular way, the original form of the consonant was used when the vowel was ä, the so-called inherent vowel. The resulting forms are shown below in their traditional order, for some consonants, there is an eighth form for the diphthong -wa or -oa, and a ninth for -yä
25.
Georgian numerals
–
The Georgian numerals are the system of number names used in Georgian, a language spoken in the country of Georgia. The Georgian numerals from 30 to 99 are constructed using a system, similar to the scheme used in Basque, French for numbers 80 through 99. An older method for writing numerals exists in which most of letters of the Georgian alphabet are assigned a numeric value. The Georgian cardinal numerals up to ten are primitives, as are the words for 20 and 100, other cardinal numbers are formed from these primitives via a mixture of decimal and vigesimal structural principles. The following chart shows the forms of the primitive numbers. Except for rva and tskhra, these words are all consonant-final stems, numbers from 11 to 19 are formed from 1 through 9, respectively, by prefixing t and adding meti. In some cases, the prefixed t coalesces with the consonant of the root word to form a single consonant. Numbers between 20 and 99 use a vigesimal system. g, the hundreds are formed by linking 2,3. 10 directly to the word for 100,1000 is expressed as atasi, and multiples of 1000 are expressed using atasi — so, for example,2000 is ori atasi. The final i is dropped when a number is added to a multiple of 100. The Georgian numeral system is a system of representing numbers using letters of the Georgian alphabet, numerical values in this system are obtained by simple addition of the component numerals, which are written greatest-to-least from left to right. *Both letters ჳ and უ are equal to 400 in numerical value and these letters have no numerical value
26.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made
27.
Hebrew numerals
–
The system of Hebrew numerals is a quasi-decimal alphabetic numeral system using the letters of the Hebrew alphabet. The system was adapted from that of the Greek numerals in the late 2nd century BC, the current numeral system is also known as the Hebrew alphabetic numerals to contrast with earlier systems of writing numerals used in classical antiquity. The Greek system was adopted in Hellenistic Judaism and had been in use in Greece since about the 5th century BC, in this system, there is no notation for zero, and the numeric values for individual letters are added together. Each unit is assigned a letter, each tens a separate letter. The later hundreds are represented by the sum of two or three letters representing the first four hundreds, to represent numbers from 1,000 to 999,999, the same letters are reused to serve as thousands, tens of thousands, and hundreds of thousands. In Israel today, the system of Arabic numerals is used in almost all cases. The Hebrew numerals are used only in cases, such as when using the Hebrew calendar, or numbering a list. Numbers in Hebrew from zero to one million, Hebrew alphabet are used to a limited extent to represent numbers, widely used on calendars. In other situations Arabic numerals are used, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. For ordinal numbers greater than ten the cardinal is used and numbers above the value 20 have no gender, note, For ordinal numbers greater than 10, cardinal numbers are used instead. Note, For numbers greater than 20, gender does not apply, cardinal and ordinal numbers must agree in gender with the noun they are describing. If there is no such noun, the form is used. Ordinal numbers must also agree in number and definite status like other adjectives, the cardinal number precedes the noun, except for the number one which succeeds it. The number two is special - shnayim and shtayim become shney and shtey when followed by the noun they count, for ordinal numbers greater than ten the cardinal is used. The Hebrew numeric system operates on the principle in which the numeric values of the letters are added together to form the total. For example,177 is represented as קעז which corresponds to 100 +70 +7 =177, mathematically, this type of system requires 27 letters. In practice the last letter, tav is used in combination with itself and/or other letters from kof onwards, to numbers from 500
28.
Roman numerals
–
The numeric system represented by Roman numerals originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers in this system are represented by combinations of letters from the Latin alphabet, Roman numerals, as used today, are based on seven symbols, The use of Roman numerals continued long after the decline of the Roman Empire. The numbers 1 to 10 are usually expressed in Roman numerals as follows, I, II, III, IV, V, VI, VII, VIII, IX, Numbers are formed by combining symbols and adding the values, so II is two and XIII is thirteen. Symbols are placed left to right in order of value. Named after the year of its release,2014 as MMXIV, the year of the games of the XXII Olympic Winter Games The standard forms described above reflect typical modern usage rather than a universally accepted convention. Usage in ancient Rome varied greatly and remained inconsistent in medieval, Roman inscriptions, especially in official contexts, seem to show a preference for additive forms such as IIII and VIIII instead of subtractive forms such as IV and IX. Both methods appear in documents from the Roman era, even within the same document, double subtractives also occur, such as XIIX or even IIXX instead of XVIII. Sometimes V and L are not used, with such as IIIIII. Such variation and inconsistency continued through the period and into modern times. Clock faces that use Roman numerals normally show IIII for four o’clock but IX for nine o’clock, however, this is far from universal, for example, the clock on the Palace of Westminster in London uses IV. Similarly, at the beginning of the 20th century, different representations of 900 appeared in several inscribed dates. For instance,1910 is shown on Admiralty Arch, London, as MDCCCCX rather than MCMX, although Roman numerals came to be written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used
29.
Attic numerals
–
Attic numerals were used by the ancient Greeks, possibly from the 7th century BC. They were also known as Herodianic numerals because they were first described in a 2nd-century manuscript by Herodian. They are also known as acrophonic numerals because the symbols derive from the first letters of the words that the symbols represent, five, ten, hundred, thousand and ten thousand. The use of Η for 100 reflects the date of this numbering system. It wasnt until Aristophanes of Byzantium introduced the various accent markings during the Hellenistic period that the spiritus asper began to represent /h/, thus the word for a hundred would originally have been written ΗΕΚΑΤΟΝ, as compared to the now more familiar spelling ἑκατόν. In modern Greek, the /h/ phoneme has disappeared altogether, unlike the more familiar Modern Roman numeral system, the Attic system contains only additive forms. Thus, the number 4 is written ΙΙΙΙ, not ΙΠ, the numerals representing 50,500, and 5,000 were composites of pi and a tiny version of the applicable power of ten. For example, is five times one thousand, specific numeral symbols were used to represent one drachma, to represent talents and staters, to represent ten mnas and to represent one half and one quarter. Attic numerals in Unicode Etruscan numerals
30.
Babylonian numerals
–
Babylonian numerals were written in cuneiform, using a wedge-tipped reed stylus to make a mark on a soft clay tablet which would be exposed in the sun to harden to create a permanent record. The Babylonians, who were famous for their observations and calculations. Neither of the predecessors was a positional system and this system first appeared around 2000 BC, its structure reflects the decimal lexical numerals of Semitic languages rather than Sumerian lexical numbers. However, the use of a special Sumerian sign for 60 attests to a relation with the Sumerian system. The Babylonian system is credited as being the first known positional numeral system and this was an extremely important development, because non-place-value systems require unique symbols to represent each power of a base, which can make calculations more difficult. Only two symbols were used to notate the 59 non-zero digits and these symbols and their values were combined to form a digit in a sign-value notation quite similar to that of Roman numerals, for example, the combination represented the digit for 23. A space was left to indicate a place value, similar to the modern-day zero. Babylonians later devised a sign to represent this empty place and they lacked a symbol to serve the function of radix point, so the place of the units had to be inferred from context, could have represented 23 or 23×60 or 23×60×60 or 23/60, etc. A common theory is that 60, a highly composite number, was chosen due to its prime factorization, 2×2×3×5, which makes it divisible by 1,2,3,4,5,6,10,12,15,20. Integers and fractions were represented identically — a radix point was not written, the Babylonians did not technically have a digit for, nor a concept of, the number zero. Although they understood the idea of nothingness, it was not seen as a number—merely the lack of a number, what the Babylonians had instead was a space to mark the nonexistence of a digit in a certain place value. Babylon Babylonia History of zero Numeral system Menninger, Karl W. Number Words and Number Symbols, Number, From Ancient Civilisations to the Computer. CESCNC - a handy and easy-to use numeral converter
31.
Brahmi numerals
–
The Brahmi numerals are a numeral system attested from the 3rd century BCE. They are the direct ancestors of the modern Indian and Hindu–Arabic numerals. However, they were distinct from these later systems, as they were not used as a positional system with a zero. Rather, there were separate numerals for each of the tens, there were also symbols for 100 and 1000 which were combined in ligatures with the units to signify 200,300,2000,3000, etc. In the oldest inscriptions,4 is a +, reminiscent of the X of neighboring Kharoṣṭhī, however, the other unit numerals appear to be arbitrary symbols in even the oldest inscriptions. Likewise, the units for the tens are not obviously related to other or to the units. With a similar writing instrument, the forms of such groups of strokes could easily be broadly similar as well. Another possibility is that the numerals were acrophonic, like the Attic numerals, and based on the Kharoṣṭhī alphabet. For instance, chatur 4 early on took a ¥ shape much like the Kharosthi letter ch, panca 5 looks remarkably like Kharosthi p, and so on through shat 6, sapta 7, however, there are problems of timing and lack of records. The full set of numerals is not attested until the 1st-2nd century CE,400 years after Ashoka, both suggestions, that the numerals derive from tallies or that theyre alphabetic, are purely speculative at this point, with little evidence to decide between them. Brahmi script Georges Ifrah, The Universal History of Numbers, From Prehistory to the Invention of the Computer, translated by David Bellos, Sophie Wood, pub. Karl Menninger, Number Words and Number Symbols - A Cultural History of Numbers ISBN 0-486-27096-3 David Eugene Smith and Louis Charles Karpinski, The Hindu-Arabic Numerals
32.
Egyptian numerals
–
The system of ancient Egyptian numerals was used in Ancient Egypt around 3000 BC until the early first millennium AD. It was a system of numeration based on the scale of ten, often rounded off to the power, written in hieroglyphs. The hieratic form of numerals stressed an exact finite series notation, the Ancient Egyptian system used bases of ten. The following hieroglyphics were used to denote powers of ten, Multiples of these values were expressed by repeating the symbol as many times as needed, for instance, a stone carving from Karnak shows the number 4622 as Egyptian hieroglyphs could be written in both directions. The symbol nfr, meaning beautiful, was used to indicate the base level in drawings of tombs and pyramids. Rational numbers could also be expressed, but only as sums of fractions, i. e. sums of reciprocals of positive integers, except for 2⁄3. The hieroglyph indicating a fraction looked like a mouth, which meant part, Fractions were written with this fractional solidus, i. e. the numerator 1, and the positive denominator below. As with most modern day languages, the ancient Egyptian language could also write out numerals as words phonetically, just like one can write thirty instead of 30 in English. The word, for instance, was written as while the numeral was This was, however, uncommon for most numbers other than one, instances of numerals written in hieratic can be found as far back as the Early Dynastic Period. The Old Kingdom Abusir Papyri are an important corpus of texts that utilize hieratic numerals. A large number like 9999 could thus be written only four signs—combining the signs for 9000,900,90. Boyer saw the new hieratic numerals as ciphered, mapping one number onto one Egyptian letter for the first time in human history, greeks adopted the new system, mapping their counting numbers onto two of their alphabets, the Doric and Ionian. In the oldest hieratic texts the individual numerals were written in a ciphered relationship to the Egyptian alphabet. But during the Old Kingdom a series of standardized writings had developed for sign-groups containing more than one numeral, however, repetition of the same numeral for each place-value was not allowed in the hieratic script. As the hieratic writing system developed over time, these sign-groups were further simplified for quick writing, two famous mathematical papyri using hieratic script are the Moscow Mathematical Papyrus and the Rhind Mathematical Papyrus. The majuscule letter A in some reconstructed forms means that the quality of that remains uncertain, Ancient Egypt Egyptian language Egyptian mathematics Allen. Middle Egyptian, An Introduction to the Language and Culture of Hieroglyphs, Egyptian Grammar, Being an Introduction to the Study of Hieroglyphs. Hieratische Paläographie, Die aegyptische Buchschrift in ihrer Entwicklung von der Fünften Dynastie bis zur römischen Kaiserzeit, Introduction Egyptian numerals Numbers and dates http, //egyptianmath. blogspot. com
33.
Etruscan numerals
–
The Etruscan numerals were used by the ancient Etruscans. The system was adapted from the Greek Attic numerals and formed the inspiration for the later Roman numerals via the Old Italic script, there is very little surviving evidence of these numerals. Examples are known of the symbols for numbers, but it is unknown which symbol represents which number. Thanks to the written out on the Tuscania dice, there is agreement that zal, ci, huθ. The assignment depends on whether the numbers on opposite faces of Etruscan dice add up to seven, some dice found did not show this proposed pattern. An aspect of the Etruscan numeral system is that some numbers, so 17 is not written *semφ-śar as users of the Hindu-Arabic numerals might reason. One instead finds ci-em zaθrum, literally three from twenty, the numbers 17,18 and 19 are all written in this way. The general agreement among Etruscologists nowadays is the following, Archaeological evidence strongly supports the correspondence 4/huth and 6/sa. In the same necropolis, in the Tomb of the Anina, which contains six burial places, an inscription reads, sa suthi cherichunce, however, other scholars disagree with this attribution. In this connection, in October 2011, Artioli and colleagues presented evidence from 93 Etruscan dice allowing the firm attribution of the numeral 6 to the graphical value huth and 4 to sa. In 2006, S. A. Yatsemirsky presented evidence that zar = śar meant ‘12’ while halχ meant ‘10’, according to his interpretation, the attested form huθzar was used for ‘sixteen’, not ‘fourteen’, assuming huθ meant four. Much debate has been carried out about a possible Indo-European origin of the Etruscan cardinals, in the words of Larissa Bonfante, What these numerals show, beyond any shadow of a doubt, is the non-Indo-European nature of the Etruscan language
34.
Inuit numerals
–
Inuit, like other Eskimo languages, uses a vigesimal counting system. Inuit counting has sub-bases at 5,10, and 15, arabic numerals, consisting of 10 distinct digits are not adequate to represent a base-20 system. The numeral system has helped to revive counting in Inuit, which had been falling into disuse among Inuit speakers due to the prevalence of the system in schools. The picture below shows the numerals 1–19 and then 0, twenty is written with a one and a zero, forty with a two and a zero, and four hundred with a one and two zeros. The corresponding spoken forms are, In Greenlandic Inuit language
35.
Maya numerals
–
The Maya numeral system is a vigesimal positional notation used in the Maya civilization to represent numbers. The numerals are made up of three symbols, zero, one and five, for example, thirteen is written as three dots in a horizontal row above two horizontal lines stacked above each other. Numbers after 19 were written vertically in powers of twenty, for example, thirty-three would be written as one dot above three dots, which are in turn atop two lines. The first dot represents one twenty or 1×20, which is added to three dots and two bars, or thirteen, upon reaching 202 or 400, another row is started. The number 429 would be written as one dot above one dot above four dots, the powers of twenty are numerals, just as the Hindu-Arabic numeral system uses powers of tens. Other than the bar and dot notation, Maya numerals can be illustrated by face type glyphs or pictures, the face glyph for a number represents the deity associated with the number. These face number glyphs were used, and are mostly seen on some of the most elaborate monumental carving. Addition and subtraction, Adding and subtracting numbers below 20 using Maya numerals is very simple, addition is performed by combining the numeric symbols at each level, If five or more dots result from the combination, five dots are removed and replaced by a bar. If four or more bars result, four bars are removed, similarly with subtraction, remove the elements of the subtrahend symbol from the minuend symbol, If there are not enough dots in a minuend position, a bar is replaced by five dots. If there are not enough bars, a dot is removed from the next higher minuend symbol in the column, the Maya/Mesoamerican Long Count calendar required the use of zero as a place-holder within its vigesimal positional numeral system. A shell glyph – – was used as a symbol for these Long Count dates. However, since the eight earliest Long Count dates appear outside the Maya homeland, it is assumed that the use of zero predated the Maya, indeed, many of the earliest Long Count dates were found within the Olmec heartland. However, the Olmec civilization had come to an end by the 4th century BC, in the Long Count portion of the Maya calendar, a variation on the strictly vigesimal numbering is used. The Long Count changes in the place value, it is not 20×20 =400, as would otherwise be expected. This is supposed to be because 360 is roughly the number of days in a year, subsequent place values return to base-twenty. In fact, every known example of large numbers uses this modified vigesimal system and it is reasonable to assume, but not proven by any evidence, that the normal system in use was a pure base-20 system. Maya Mathematics - online converter from decimal numeration to Maya numeral notation, anthropomorphic Maya numbers - online story of number representations
36.
Quipu
–
Quipus, sometimes known as khipus or talking knots, were recording devices historically used in a number of cultures and particularly in the region of Andean South America. A quipu usually consisted of colored, spun, and plied thread or strings made from cotton or camelid fiber. For the Inca, the system aided in collecting data and keeping records, ranging from monitoring tax obligations, properly collecting census records, calendrical information, the cords contained numeric and other values encoded by knots in a base ten positional system. A quipu could have only a few or up to 2,000 cords, the configuration of the quipus have also been compared to string mops. Archaeological evidence has shown a use of finely carved wood as a supplemental. A relatively small number have survived, objects that can be identified unambiguously as quipus first appear in the archaeological record in the first millennium AD. As the region was subsumed under the invading Spanish Empire, the use of the quipu faded from use, however, in several villages, quipu continued to be important items for the local community, albeit for ritual rather than recording use. It is unclear as to where and how many intact quipus still exist, as many have been stored away in mausoleums, quipu is the Spanish spelling and the most common spelling in English. Khipu is the word for knot in Cusco Quechua, the kh is an aspirated k, in most Quechua varieties, the term is kipu. The word khipu, meaning knot or to knot, comes from the Quechua language word, quipu,1704, most information recorded on the quipus consists of numbers in a decimal system. In the early years of the Spanish conquest of Peru, Spanish officials often relied on the quipus to settle disputes over local tribute payments or goods production, Spanish chroniclers also concluded that quipus were used primarily as mnemonic devices to communicate and record numerical information. Quipucamayocs could be summoned to court, where their bookkeeping was recognised as valid documentation of past payments, some of the knots, as well as other features, such as color, are thought to represent non-numeric information, which has not been deciphered. It is generally thought that the system did not include phonetic symbols analogous to letters of the alphabet, however Gary Urton has suggested that the quipus used a binary system which could record phonological or logographic data. To date, no link has yet been found between a quipu and Quechua, the language of the Peruvian Andes. This suggests that quipus are not a writing system and have no phonetic referent. If this conjecture is correct, quipus are the known example of a complex language recorded in a 3-D system. Marcia and Robert Ascher, after having analyzed several hundred quipus, have shown that most information on quipus is numeric, and these numbers can be read. Each cluster of knots is a digit, and there are three types of knots, simple overhand knots, long knots, consisting of an overhand knot with one or more additional turns
37.
Prehistoric numerals
–
Counting in prehistory was first assisted by using body parts, primarily the fingers. This is reflected in the etymology of certain names, such as in the names of ten and hundred in the Proto-Indo-European numerals. Early systems of counting using tally marks appear in the Upper Paleolithic, the first more complex systems develop in the Ancient Near East together with the development of early writing out of proto-writing systems. Numerals originally developed from the use of tally marks as a counting aid, counting aids like tally marks become more sophisticated in the Near Eastern Neolithic, developing into various types of proto-writing. The Cuneiform script develops out of proto-writing associated with keeping track of goods during the Chalcolithic, the Moksha people, whose existence dates to about the beginning of the 1st millennium BC, had a numeral system. The numerals were tally marks carved on wood, drawn on clay or birch bark, in some places they were preserved until the beginning of 20th century mostly among small traders, bee-keepers, and village elders. These numerals still can be found on old shepherd and tax-gatherer staffs, apiaries, evans, Writing in Prehistoric Greece, Journal of the Anthropological Institute of Great Britain and Ireland
38.
Positional notation
–
Positional notation or place-value notation is a method of representing or encoding numbers. Positional notation is distinguished from other notations for its use of the symbol for the different orders of magnitude. This greatly simplified arithmetic, leading to the spread of the notation across the world. With the use of a point, the notation can be extended to include fractions. The Hindu–Arabic numeral system, base-10, is the most commonly used system in the world today for most calculations, today, the base-10 system, which is likely motivated by counting with the ten fingers, is ubiquitous. Other bases have been used in the past however, and some continue to be used today, for example, the Babylonian numeral system, credited as the first positional numeral system, was base-60, but it lacked a real 0 value. Zero was indicated by a space between sexagesimal numerals, by 300 BC, a punctuation symbol was co-opted as a placeholder in the same Babylonian system. In a tablet unearthed at Kish, the scribe Bêl-bân-aplu wrote his zeros with three hooks, rather than two slanted wedges, the Babylonian placeholder was not a true zero because it was not used alone. Nor was it used at the end of a number, thus numbers like 2 and 120,3 and 180,4 and 240, looked the same because the larger numbers lacked a final sexagesimal placeholder. Counting rods and most abacuses have been used to represent numbers in a numeral system. This approach required no memorization of tables and could produce practical results quickly, for four centuries there was strong disagreement between those who believed in adopting the positional system in writing numbers and those who wanted to stay with the additive-system-plus-abacus. Although electronic calculators have largely replaced the abacus, the continues to be used in Japan. After the French Revolution, the new French government promoted the extension of the decimal system, some of those pro-decimal efforts—such as decimal time and the decimal calendar—were unsuccessful. Other French pro-decimal efforts—currency decimalisation and the metrication of weights and measures—spread widely out of France to almost the whole world. According to Joseph Needham and Lam Lay Yong, decimal fractions were first developed and used by the Chinese in the 1st century BC, the written Chinese decimal fractions were non-positional. However, counting rod fractions were positional, the Jewish mathematician Immanuel Bonfils used decimal fractions around 1350, anticipating Simon Stevin, but did not develop any notation to represent them. A forerunner of modern European decimal notation was introduced by Simon Stevin in the 16th century. A key argument against the system was its susceptibility to easy fraud by simply putting a number at the beginning or end of a quantity, thereby changing 100 into 5100
39.
Radix
–
In mathematical numeral systems, the radix or base is the number of unique digits, including zero, used to represent numbers in a positional numeral system. For example, for the system the radix is ten. For example,10 represents the one hundred, while 2 represents the number four. Radix is a Latin word for root, root can be considered a synonym for base in the arithmetical sense. In the system with radix 13, for example, a string of such as 398 denotes the number 3 ×132 +9 ×131 +8 ×130. More generally, in a system with radix b, a string of digits d1 … dn denotes the number d1bn−1 + d2bn−2 + … + dnb0, commonly used numeral systems include, For a larger list, see List of numeral systems. The octal and hexadecimal systems are used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, a similar relationship holds between every octal digit and every possible sequence of three binary digits, since eight is the cube of two. However, other systems are possible, e. g. golden ratio base. Base Radix economy Non-standard positional numeral systems Base Convert, a floating-point base calculator MathWorld entry on base
40.
Ternary numeral system
–
The ternary numeral system has three as its base. Analogous to a bit, a digit is a trit. One trit is equivalent to bits of information. Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary, for example, decimal 365 corresponds to binary 101101101 and to ternary 111112. However, they are far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary. The value of a number with n bits that are all 1 is 2n −1. Then N = M, N = /, and N = bd −1, for a three-digit ternary number, N =33 −1 =26 =2 ×32 +2 ×31 +2 ×30 =18 +6 +2. Nonary or septemvigesimal can be used for representation of ternary. A base-three system is used in Islam to keep track of counting Tasbih to 99 or to 100 on a hand for counting prayers. In certain analog logic, the state of the circuit is often expressed ternary and this is most commonly seen in Transistor–transistor logic using 7406 open collector logic. The output is said to either be low, high, or open, in this configuration the output of the circuit is actually not connected to any voltage reference at all. Where the signal is usually grounded to a reference, or at a certain voltage level. Thus, the voltage level is sometimes unpredictable. A rare ternary point is used to denote fractional parts of an inning in baseball, since each inning consists of three outs, each out is considered one third of an inning and is denoted as.1. For example, if a player pitched all of the 4th, 5th and 6th innings, plus 2 outs of the 7th inning, his Innings pitched column for that game would be listed as 3.2, meaning 3⅔. In this usage, only the part of the number is written in ternary form. Ternary numbers can be used to convey self-similar structures like the Sierpinski triangle or the Cantor set conveniently, additionally, it turns out that the ternary representation is useful for defining the Cantor set and related point sets, because of the way the Cantor set is constructed. The Cantor set consists of the points from 0 to 1 that have an expression that does not contain any instance of the digit 1
41.
Quaternary numeral system
–
Quaternary is the base-4 numeral system. It uses the digits 0,1,2 and 3 to represent any real number. Four is the largest number within the range and one of two numbers that is both a square and a highly composite number, making quaternary a convenient choice for a base at this scale. Despite being twice as large, its economy is equal to that of binary. However, it no better in the localization of prime numbers. See decimal and binary for a discussion of these properties, as with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix 4,8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit with 2,3 or 4 binary digits, for example, in base 4,302104 =11001001002. Although octal and hexadecimal are widely used in computing and computer programming in the discussion and analysis of binary arithmetic and logic, by analogy with byte and nybble, a quaternary digit is sometimes called a crumb. There is a surviving list of Ventureño language number words up to 32 written down by a Spanish priest ca, the Kharosthi numerals have a partial base 4 counting system from 1 to decimal 10. Quaternary numbers are used in the representation of 2D Hilbert curves, here a real number between 0 and 1 is converted into the quaternary system. Every single digit now indicates in which of the respective 4 sub-quadrants the number will be projected, parallels can be drawn between quaternary numerals and the way genetic code is represented by DNA. The four DNA nucleotides in order, abbreviated A, C, G and T, can be taken to represent the quaternary digits in numerical order 0,1,2. With this encoding, the complementary digit pairs 0↔3, and 1↔2 match the complementation of the pairs, A↔T and C↔G. For example, the nucleotide sequence GATTACA can be represented by the quaternary number 2033010, quaternary line codes have been used for transmission, from the invention of the telegraph to the 2B1Q code used in modern ISDN circuits
42.
Quinary
–
Quinary is a numeral system with five as the base. A possible origination of a system is that there are five fingers on either hand. The base five is stated from 0–4, in the quinary place system, five numerals, from 0 to 4, are used to represent any real number. According to this method, five is written as 10, twenty-five is written as 100, today, the main usage of base 5 is as a biquinary system, which is decimal using five as a sub-base. Another example of a system, is sexagesimal, base 60. Each quinary digit has log25 bits of information, many languages use quinary number systems, including Gumatj, Nunggubuyu, Kuurn Kopan Noot, Luiseño and Saraveca. Gumatj is a true 5–25 language, in which 25 is the group of 5. The Gumatj numerals are shown below, In the video game Riven and subsequent games of the Myst franchise, a decimal system with 2 and 5 as a sub-bases is called biquinary, and is found in Wolof and Khmer. Roman numerals are a biquinary system, the numbers 1,5,10, and 50 are written as I, V, X, and L respectively. Eight is VIII and seventy is LXX, most versions of the abacus use a biquinary system to simulate a decimal system for ease of calculation. Urnfield culture numerals and some tally mark systems are also biquinary, units of currencies are commonly partially or wholly biquinary. A vigesimal system with 4 and 5 as a sub-bases is found in Nahuatl, pentimal system Quibinary Yan Tan Tethera References, Quinary Base Conversion, includes fractional part, from Math Is Fun Media related to Quinary numeral system at Wikimedia Commons
43.
Senary
–
The senary numeral system has six as its base. It has been adopted independently by a number of cultures. Like decimal, it is a semiprime, though being the product of the two consecutive numbers that are both prime it has a high degree of mathematical properties for its size. As six is a highly composite number, many of the arguments made in favor of the duodecimal system also apply to this base-6. Senary may be considered interesting in the study of numbers, since all primes other than 2 and 3. That is, for every number p greater than 3, one has the modular arithmetic relations that either p ≡1 or 5. This property maximizes the probability that the result of an integer multiplication will end in zero, E. g. if three fingers are extended on the left hand and four on the right, 34senary is represented. This is equivalent to 3 ×6 +4 which is 22decimal, flipping the sixes hand around to its backside may help to further disambiguate which hand represents the sixes and which represents the units. While most developed cultures count by fingers up to 5 in very similar ways, beyond 5 non-Western cultures deviate from Western methods, such as with Chinese number gestures. More abstract finger counting systems, such as chisanbop or finger binary, allow counting to 99,1,023, or even higher depending on the method. The English monk and historian Bede, in the first chapter of De temporum ratione, titled Tractatus de computo, vel loquela per gestum digitorum, the Ndom language of Papua New Guinea is reported to have senary numerals. Mer means 6, mer an thef means 6 ×2 =12, nif means 36, another example from Papua New Guinea are the Morehead-Maro languages. In these languages, counting is connected to ritualized yam-counting and these languages count from a base six, employing words for the powers of six, running up to 66 for some of the languages. One example is Kómnzo with the numerals, nimbo, féta, tarumba, ntamno, wärämäkä. Some Niger-Congo languages have been reported to use a number system, usually in addition to another. For some purposes, base 6 might be too small a base for convenience. The choice of 36 as a radix is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z, this choice is the basis of the base36 encoding scheme. Base36 encoding scheme Binary Ternary Duodecimal Sexagesimal Shacks Base Six Dialectic Digital base 6 clock Analog Clock Designer capable of rendering a base 6 clock Senary base conversion
44.
Octal
–
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping binary digits into groups of three. For example, the representation for decimal 74 is 1001010. Two zeroes can be added at the left,1001010, corresponding the octal digits 112, in the decimal system each decimal place is a power of ten. For example,7410 =7 ×101 +4 ×100 In the octal system each place is a power of eight. The Yuki language in California and the Pamean languages in Mexico have octal systems because the speakers count using the spaces between their fingers rather than the fingers themselves and it has been suggested that the reconstructed Proto-Indo-European word for nine might be related to the PIE word for new. Based on this, some have speculated that proto-Indo-Europeans used a number system. In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number based on 64 instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base would be too difficult, in 1718 Swedenborg wrote a manuscript, En ny rekenkonst som om vexlas wid Thalet 8 i stelle then wanliga wid Thalet 10. The numbers 1-7 are there denoted by the l, s, n, m, t, f, u. Thus 8 = lo,16 = so,24 = no,64 = loo,512 = looo etc, numbers with consecutive consonants are pronounced with vowel sounds between in accordance with a special rule. Writing under the pseudonym Hirossa Ap-Iccim in The Gentlemans Magazine, July 1745, Hugh Jones proposed a system for British coins, weights. In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic and he suggested base 8 for which he coined the term octal. In the mid 19th century, Alfred B. Taylor concluded that Our octonary radix is, therefore, so, for example, the number 65 would be spoken in octonary as under-un. Taylor also republished some of Swedenborgs work on octonary as an appendix to the above-cited publications, in the 2009 film Avatar, the language of the extraterrestrial Navi race employs an octal numeral system, probably due to the fact that they have four fingers on each hand. In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, in the tabletop game series Warhammer 40,000, the Tau race use an octal number system. Octal became widely used in computing systems such as the PDP-8, ICL1900. Octal was an abbreviation of binary for these machines because their word size is divisible by three
45.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0
46.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer
47.
Hexadecimal
–
In mathematics and computing, hexadecimal is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits, it allows a more human-friendly representation of binary-coded values, one hexadecimal digit represents a nibble, which is half of an octet or byte. For example, a byte can have values ranging from 00000000 to 11111111 in binary form. In a non-programming context, a subscript is typically used to give the radix, several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix 0x is used in C and related languages, where this value might be denoted as 0x2AF3, in contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously, a numerical subscript can give the base explicitly,15910 is decimal 159,15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h. example. com/name%20with%20spaces where %20 is the space character, thus ’, represents the right single quotation mark, Unicode code point number 2019 in hex,8217. In the Unicode standard, a value is represented with U+ followed by the hex value. Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits prefixed with #, white, CSS allows 3-hexdigit abbreviations with one hexdigit per component, #FA3 abbreviates #FFAA33. *nix shells, AT&T assembly language and likewise the C programming language, to output an integer as hexadecimal with the printf function family, the format conversion code %X or %x is used. In Intel-derived assembly languages and Modula-2, hexadecimal is denoted with a suffixed H or h, some assembly languages use the notation HABCD. Ada and VHDL enclose hexadecimal numerals in based numeric quotes, 16#5A3#, for bit vector constants VHDL uses the notation x5A3. Verilog represents hexadecimal constants in the form 8hFF, where 8 is the number of bits in the value, the Smalltalk language uses the prefix 16r, 16r5A3 PostScript and the Bourne shell and its derivatives denote hex with prefix 16#, 16#5A3. For PostScript, binary data can be expressed as unprefixed consecutive hexadecimal pairs, in early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the Sad Mac to tell the user what went wrong. Common Lisp uses the prefixes #x and #16r, setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, MSX BASIC, QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H, &H5A3 BBC BASIC and Locomotive BASIC use & for hex. TI-89 and 92 series uses a 0h prefix, 0h5A3 ALGOL68 uses the prefix 16r to denote hexadecimal numbers, binary, quaternary and octal numbers can be specified similarly
48.
Vigesimal
–
The vigesimal or base 20 numeral system is based on twenty. In a vigesimal system, twenty individual numerals are used. One modern method of finding the extra needed symbols is to write ten as the letter A20, to write nineteen as J20, and this is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters A–F. Another method skips over the letter I, in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, the number twenty is written as 1020. According to this notation,2020 means forty in decimal = + D020 means two hundred and sixty in decimal = +10020 means four hundred in decimal = + +, in the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example,10 means ten,20 means twenty, in decimal, dividing by three twice only gives one digit periods because 9 is the number below ten. 21, however, the adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods, the prime factorization of twenty is 22 ×5, so it is not a perfect power. However, its part,5, is congruent to 1. Thus, according to Artins conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37. 395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a set of bases found that, of the first 15,456 primes. In many European languages,20 is used as a base, vigesimal systems are common in Africa, for example in Yoruba. Ogún,20, is the basic numeric block, ogójì,40, =20 multiplied by 2. Ogota,60, =20 multiplied by 3, ogorin,80, =20 multiplied by 4. Ogorun,100, =20 multiplied by 5, twenty was a base in the Maya and Aztec number systems. The Maya used the names for the powers of twenty, kal, bak, pic, calab, kinchil. See also Maya numerals and Maya calendar, Mayan languages, Yucatec, the Aztec called them, cempoalli, centzontli, cenxiquipilli, cempoalxiquipilli, centzonxiquipilli and cempoaltzonxiquipilli. Note that the ce prefix at the beginning means one and is replaced with the number to get the names of other multiples of the power
49.
Non-standard positional numeral systems
–
Each numeral represents one of the values 0,1,2, etc. up to b −1, but the value also depends on the position of the digit in a number. The value of a string like pqrs in base b is given by the polynomial form p × b 3 + q × b 2 + r × b + s. The numbers written in superscript represent the powers of the base used, and a minus sign −, all real numbers can be represented. This article summarizes facts on some non-standard positional numeral systems, in most cases, the polynomial form in the description of standard systems still applies. Some historical numeral systems may be described as non-standard positional numeral systems, however, most of the non-standard systems listed below have never been intended for general use, but are deviced by mathematicians or engineers for special academic or technical use. A bijective numeral system with base b uses b different numerals to represent all non-negative integers, however, the numerals have values 1,2,3, etc. up to and including b, whereas zero is represented by an empty digit string. For example, it is possible to have decimal without a zero, unary is the bijective numeral system with base b =1. In unary, one numeral is used to represent all positive integers, the value of the digit string pqrs given by the polynomial form can be simplified into p + q + r + s since bn =1 for all n. Non-standard features of this include, The value of a digit does not depend on its position. Thus, one can argue that unary is not a positional system at all. Introducing a radix point in this system will not enable representation of non-integer values, the single numeral represents the value 1, not the value 0 = b −1. The value 0 cannot be represented, in some systems, while the base is a positive integer, negative digits are allowed. Non-adjacent form is a system where the base is b =2. In the balanced system, the base is b =3. The reflected binary code, also known as the Gray code, is related to binary numbers. A few positional systems have been suggested in which the base b is not a positive integer, negative-base systems include negabinary, negaternary and negadecimal, in base −b the number of different numerals used is b. All integers, positive and negative, can be represented without a sign, in purely imaginary base bi the b2 numbers from 0 to b2 −1 are used as digits. It can be generalized to other bases, Complex-base system
50.
Bijective numeration
–
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits. The name derives from this bijection between the set of integers and the set of finite strings using a finite set of symbols. Most ordinary numeral systems, such as the decimal system, are not bijective because more than one string of digits can represent the same positive integer. In particular, adding leading zeroes does not change the value represented, even though only the first is usual, the fact that the others are possible means that decimal is not bijective. However, unary, with one digit, is bijective. A bijective base-k numeration is a positional notation. It uses a string of digits from the set to encode each positive integer, the base-k bijective numeration system uses the digit-set to uniquely represent every non-negative integer, as follows, The integer zero is represented by the empty string. The integer represented by the nonempty digit-string anan−1, a1a0 is an kn + an−1 kn−1 +. The digit-string representing the integer m >0 is anan−1, for a given base k ≥1, there are exactly kn bijective base-k numerals of length n ≥0. Thus, using 0 to denote the empty string, the base 1,2,3,8,10,12, 119A = 1×103 + 1×102 + 9×101 + 10×1 =1200. The bijective base-10 system is a base ten positional system that does not use a digit to represent zero. It instead has a digit to represent ten, such as A, as with conventional decimal, each digit position represents a power of ten, so for example 123 is one hundred, plus two tens, plus three units. All positive integers that are represented solely with non-zero digits in conventional decimal have the same representation in decimal without a zero. Addition and multiplication in decimal without a zero are essentially the same as with conventional decimal, except that carries occur when a position exceeds ten, rather than when it exceeds nine. So to calculate 643 +759, there are twelve units, ten tens, thirteen hundreds, in the bijective base-26 system one may use the Latin alphabet letters A to Z to represent the 26 digit values one to twenty-six. With this choice of notation, the sequence begins A, B, C. Each digit position represents a power of twenty-six, so for example, many spreadsheets including Microsoft Excel use this system to assign labels to the columns of a spreadsheet, starting A, B, C. For instance, in Excel 2013, there can be up to 16384 columns, a variant of this system is used to name variable stars
51.
Unary numeral system
–
The unary numeral system is the bijective base-1 numeral system. It is the simplest numeral system to represent natural numbers, in order to represent a number N, for examples, the numbers 1,2,3,4,5. Would be represented in this system as 1,11,111,1111,11111 and these numbers should be distinguished from repunits, which are also written as sequences of ones but have their usual decimal numerical interpretation. This system is used in tallying, for example, using the tally mark |, the number 3 is represented as |||. In East Asian cultures, the three is represented as “三”, a character that is drawn with three strokes. Addition and subtraction are particularly simple in the system, as they involve little more than string concatenation. The Hamming weight or population count operation that counts the number of bits in a sequence of binary values may also be interpreted as a conversion from unary to binary numbers. However, multiplication is more cumbersome and has often used as a test case for the design of Turing machines. Compared to standard positional numeral systems, the system is inconvenient. It occurs in some decision problem descriptions in theoretical computer science, therefore, while the run-time and space requirement in unary looks better as function of the input size, it does not represent a more efficient solution. In computational complexity theory, unary numbering is used to distinguish strongly NP-complete problems from problems that are NP-complete, for such a problem, there exist hard instances for which all parameter values are at most polynomially large. Unary is used as part of data compression algorithms such as Golomb coding. It also forms the basis for the Peano axioms for formalizing arithmetic within mathematical logic, a form of unary notation called Church encoding is used to represent numbers within lambda calculus. Sloanes A000042, Unary representation of natural numbers, the On-Line Encyclopedia of Integer Sequences
52.
Signed-digit representation
–
In mathematical notation for numbers, signed-digit representation is a positional system with signed digits, the representation may not be unique. Signed-digit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries, in the binary numeral system, a special case signed-digit representation is the non-adjacent form, which can offer speed benefits with minimal space overhead. Challenges in calculation stimulated early authors Colson and Cauchy to use signed-digit representation, the further step of replacing negated digits with new ones was suggested by Selling and Cajori. In balanced form, the digits are drawn from a range −k to − k, for balanced forms, odd base numbers are advantageous. With an odd number, truncation and rounding become the same operation. A notable example is balanced ternary, where the base is b =3, balanced ternary uses the minimum number of digits in a balanced form. Balanced decimal uses digits from −5 to +4, balanced base nine, with digits from −4 to +4 provides the advantages of an odd-base balanced form with a similar number of digits, and is easy to convert to and from balanced ternary. Other notable examples include Booth encoding and non-adjacent form, both of which use a base of b =2, and both of which use numerals with the values −1,0, and +1, note that signed-digit representation is not necessarily unique. The oral and written forms of numbers in the Punjabi language use a form of a numeral one written as una or un. This negative one is used to form 19,29, …,89 from the root for 20,30, similarly, the Sesotho language utilizes negative numerals to form 8s and 9s. 8 robeli meaning break two i. e. two fingers down 9 robong meaning break one i. e. one finger down In 1928, Florian Cajori noted the theme of signed digits, starting with Colson. In his book History of Mathematical Notations, Cajori titled the section Negative numerals, eduard Selling advocated inverting the digits 1,2,3,4, and 5 to indicate the negative sign. He also suggested snie, jes, jerd, reff, most of the other early sources used a bar over a digit to indicate a negative sign for a it. For completeness, Colson uses examples and describes addition, multiplication and division using a table of multiples of the divisor and he explains the convenience of approximation by truncation in multiplication. Colson also devised an instrument that calculated using signed digits, Negative base Redundant binary representation J. P. Balantine A Digit for Negative One, American Mathematical Monthly 32,302. Augustin-Louis Cauchy Sur les moyens deviter les erreurs dans les calculs numerique, also found in Oevres completes Ser. Lui Han, Dongdong Chen, Seok-Bum Ko, Khan A. Wahid Non-speculative Decimal Signed Digit Adder from Department of Electrical and Computer Engineering, rudolf Mehmke Numerisches Rechen, §4 Beschränkung in den verwendeten Ziffern, Kleins encyclopedia, I-2, p.944
53.
Balanced ternary
–
Balanced ternary is a non-standard positional numeral system, useful for comparison logic. While it is a number system, in the standard ternary system. The digits in the balanced ternary system have values −1,0, different sources use different glyphs used to represent the three digits in balanced ternary. In this article, T represents −1, while 0 and 1 represent themselves, other conventions include using − and + to represent −1 and 1 respectively, or using Greek letter theta, which resembles a minus sign in a circle, to represent −1. In Setun printings, −1 is represented as overturned 1,1, the notation has a number of computational advantages over regular binary. Particularly, the plus–minus consistency cuts down the rate in multi-digit multiplication. Balanced ternary also has a number of advantages over traditional ternary. Particularly, the multiplication table has no carries in balanced ternary. A possible use of balanced ternary is to represent if a list of values in a list is less than, equal to or greater than the corresponding value in a second list. Balanced ternary can also represent all integers without using a separate minus sign, in the balanced ternary system the value of a digit n places left of the radix point is the product of the digit and 3n. This is useful when converting between decimal and balanced ternary, in the following the strings denoting balanced ternary carry the suffix, bal3. For instance, −2/3dec = −1 + 1/3 = −1×30 + 1×3−1 = T. 1bal3, an integer is divisible by three if and only if the digit in the units place is zero. We may check the parity of a balanced ternary integer by checking the parity of the sum of all trits and this sum has the same parity as the integer itself. Balanced ternary can also be extended to fractional numbers similar to how decimal numbers are written to the right of the radix point, in decimal or binary, integer values and terminating fractions have multiple representations. For example,110 =0.1 =0.10 =0.09, and,12 =0. 1bin =0. 10bin =0. 01bin. Some balanced ternary fractions have multiple representations too, for example,16 =0. 1Tbal3 =0. 01bal3. Certainly, in the decimal and binary, we may omit the rightmost trailing infinite 0s after the radix point, but, in balanced ternary, we cant omit the rightmost trailing infinite –1s after the radix point in order to gain a representations of integer or terminating fraction. Donald Knuth has pointed out that truncation and rounding are the operation in balanced ternary — they produce exactly the same result
54.
Factorial number system
–
In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, by converting a number less than n. General mixed radix systems were studied by Georg Cantor, the term factorial number system is used by Knuth, while the French equivalent numération factorielle was first used in 1888. The term factoradic, which is a portmanteau of factorial and mixed radix, appears to be of more recent date. The factorial number system is a mixed radix numeral system, the i-th digit from the right has base i, which means that the digit must be less than i. From this it follows that the rightmost digit is always 0, the second can be 0 or 1, the third 0,1 or 2, the factorial number system is sometimes defined with the 0. Place omitted because it is always zero, in this article, a factorial number representation will be flagged by a subscript. Stands for 354413021100, whose value is = 3×5, general properties of mixed radix number systems also apply to the factorial number system. Reading the remainders backward gives 341010, in principle, this system may be extended to represent fractional numbers, though rather than the natural extension of place values. Etc. which are undefined, the choice of radix values n =0,1,2,3,4. Again, the 0 and 1 places may be omitted as these are always zero, the corresponding place values are therefore 1/1, 1/1, 1/2, 1/6, 1/24. The following sortable table shows the 24 permutations of four elements with different inversion related vectors, the left and right inversion counts l and r are particularly eligible to be interpreted as factorial numbers. L gives the position in reverse colexicographic order, and the latter the position in lexicographic order. Sorting by a column that has the omissible 0 on the right makes the numbers in that column correspond to the index numbers in the immovable column on the left. The small columns are reflections of the next to them. The rightmost column shows the digit sums of the factorial numbers, for another example, the greatest number that could be represented with six digits would be 543210. Which equals 719 in decimal, 5×5, clearly the next factorial number representation after 543210. is 1000000. =72010, the value for the radix-7 digit
55.
Negative base
–
A negative base may be used to construct a non-standard positional numeral system. The need to store the information normally contained by a sign often results in a negative-base number being one digit longer than its positive-base equivalent. Negative numerical bases were first considered by Vittorio Grünwald in his work Giornale di Matematiche di Battaglini, Grünwald gave algorithms for performing addition, subtraction, multiplication, division, root extraction, divisibility tests, and radix conversion. Negative bases were later rediscovered by A. J. Kempner in 1936 and Zdzisław Pawlak. Negabinary was implemented in the early Polish computer BINEG, built 1957–59, based on ideas by Z. Pawlak, implementations since then have been rare. The base −r expansion of a is given by the string dndn-1…d1d0. Negative-base systems may thus be compared to signed-digit representations, such as balanced ternary, some numbers have the same representation in base −r as in base r. For example, the numbers from 100 to 109 have the same representations in decimal and negadecimal, similarly,17 =24 +20 =4 +0 and is represented by 10001 in binary and 10001 in negabinary. The base −r expansion of a number can be found by repeated division by −r, recording the non-negative remainders of 0,1, …, r −1, and concatenating those remainders, starting with the last. Note that if a / b = c, remainder d, then bc + d = a, to arrive at the correct conversion, the value for c must be chosen such that d is non-negative and minimal. This is exemplified in the line of the following example wherein –5 ÷ –3 must be chosen to equal 2 remainder 1 instead of 1 remainder –2. Note that in most programming languages, the result of dividing a number by a negative number is rounded towards 0. In such a case we have a = c + d = c + d − r + r = +, because |d| < r, is the positive remainder. The conversion from integer to some negative base, Visual Basic implementation, The conversion to negabinary allows a remarkable shortcut, the bitwise XOR portion is originally due to Schroeppel. Adding negabinary numbers proceeds bitwise, starting from the least significant bits, while adding two negabinary numbers, every time a carry is generated an extra carry should be propagated to next bit. Unary negation, −x, can be computed as binary subtraction from zero,0 − x, shifting to the left multiplies by −2, shifting to the right divides by −2. To multiply, multiply like normal decimal or binary numbers, but using the rules for adding the carry. It is possible to compare negabinary numbers by slightly adjusting a normal unsigned binary comparator, when comparing the numbers A and B, invert each odd positioned bit of both numbers
56.
Quater-imaginary base
–
The quater-imaginary numeral system was first proposed by Donald Knuth in 1960. It is a positional numeral system which uses the imaginary number 2i as its base. It is able to represent every complex number using only the digits 0,1,2. The real and imaginary parts of complex number are thus readily expressed in base −4 as … d 4 d 2 d 0. D −2 … and 2 ⋅ respectively, to convert a digit string from the quater-imaginary system to the decimal system, the standard formula for positional number systems can be used. Additionally, for a given string d in the form d w −1, d w −2, every complex number has a quater-imaginary representation. Most numbers have a unique quater-imaginary representation, but just as 1 has the two representations 1 =0.999. in decimal notation, so 1/5 has the two quater-imaginary representations 1. …2i =0. …2i. For example, the representation of 6i is calculated by multiplying 6i • 2i = –12, which is expressed as 3002i. Finding the quater-imaginary representation of an arbitrary real number can be done manually by solving a system of simultaneous equations. But there are methods for both, real and imaginary, integers, as shown in section Negative base#To Negaquaternary. As an example of a number we can try to find the quater-imaginary counterpart of the decimal number 7. Since it is hard to exactly how long the digit string will be for a given decimal number. In this case, a string of six digits can be chosen, when an initial guess at the size of the string eventually turns out to be insufficient, a larger string can be used. Now the value of the coefficients d0, d2 and d4, because d0 −4 d2 +16 d4 =7 and because—by the nature of the quater-imaginary system—the coefficients can only be 0,1,2 or 3 the value of the coefficients can be found. A possible configuration could be, d0 =3, d2 =3 and this configuration gives the resulting digit string for 710. 710 =0103032 i =103032 i, finding a quater-imaginary representation of a purely imaginary integer number ∈ iZ is analogous to the method described above for a real number. For example, to find the representation of 6i, it is possible to use the general formula, then all coefficients of the real part have to be zero and the complex part should make 6. However, for 6i it is seen by looking at the formula that if d1 =3 and all other coefficients are zero
57.
Non-integer representation
–
A non-integer representation uses non-integer numbers as the radix, or bases, of a positional numbering system. For a non-integer radix β >1, the value of x = d n … d 2 d 1 d 0, the numbers di are non-negative integers less than β. This is also known as a β-expansion, an introduced by Rényi. Every real number has at least one β-expansion, there are applications of β-expansions in coding theory and models of quasicrystals. β-expansions are a generalization of decimal expansions, while infinite decimal expansions are not unique, all finite decimal expansions are unique. However, even finite β-expansions are not necessarily unique, for example φ +1 = φ2 for β = φ, the golden ratio. A canonical choice for the β-expansion of a real number can be determined by the following greedy algorithm, essentially due to Rényi. Let β >1 be the base and x a non-negative real number, denote by ⌊x⌋ the floor function of x, that is, the greatest integer less than or equal to x, and let = x − ⌊x⌋ be the fractional part of x. There exists a k such that βk ≤ x < βk+1. Set d k = ⌊ x / β k ⌋ and r k =, for k −1 ≥ j > −∞, put d j = ⌊ β r j +1 ⌋, r j =. In other words, the canonical β-expansion of x is defined by choosing the largest dk such that βkdk ≤ x, then choosing the largest dk−1 such that βkdk + βk−1dk−1 ≤ x, thus it chooses the lexicographically largest string representing x. With an integer base, this defines the usual radix expansion for the number x and this construction extends the usual algorithm to possibly non-integer values of β. See Golden ratio base, 11φ = 100φ, with base e the natural logarithm behaves like the common logarithm as ln =0, ln =1, ln =2 and ln =3. This means that every integer can be expressed in base √2 without the need of a decimal point, another use of the base is to show the silver ratio as its representation in base √2 is simply 11√2. In no positional number system can every number be expressed uniquely, for example, in base ten, the number 1 has two representations,1.000. and 0.999. Another problem is to classify the real numbers whose β-expansions are periodic, let β >1, and Q be the smallest field extension of the rationals containing β. Then any real number in [0, 1) having a periodic β-expansion must lie in Q, on the other hand, the converse need not be true. The converse does hold if β is a Pisot number, although necessary and sufficient conditions are not known
58.
Golden ratio base
–
Golden ratio base is a non-integer positional numeral system that uses the golden ratio as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence 11 – this is called a standard form. A base-φ numeral that includes the digit sequence 11 can always be rewritten in standard form, despite using an irrational number base, when using standard form, all non-negative integers have a unique representation as a terminating base-φ expansion. Other numbers have standard representations in base-φ, with rational numbers having recurring representations and these representations are unique, except that numbers with a terminating expansion also have a non-terminating expansion, as they do in base-10, for example,1 =0. 99999…. In the following example the notation 1 is used to represent −1. 211. 01φ is not a standard base-φ numeral, since it contains a 11 and a 2, which isnt a 0 or 1, and contains a 1 = −1, which isnt a 0 or 1 either. To standardize a numeral, we can use the following substitutions, 011φ = 100φ, 0200φ = 1001φ, 010φ = 101φ and we can apply the substitutions in any order we like, as the result is the same. Below, the applied to the number on the previous line are on the right. Any positive number with a non-standard terminating base-φ representation can be standardized in this manner. If we get to a point where all digits are 0 or 1, except for the first digit being negative and this can be converted to the negative of a base-φ representation by negating every digit, standardizing the result, and then marking it as negative. For example, use a sign, or some other significance to denote negative numbers. If the arithmetic is being performed on a computer, a message may be returned. We can either consider our integer to be the digit of a nonstandard base-φ numeral, therefore, we can compute + =, − = and × =. So, using integer values only, we can add, subtract and multiply numbers of the form, > if and only if 2 − > × √5. If one side is negative, the positive, the comparison is trivial. Otherwise, square sides, to get an integer comparison, reversing the comparison direction if both sides were negative. On squaring both sides, the √5 is replaced with the integer 5, so, using integer values only, we can also compare numbers of the form. To convert an integer x to a number, note that x =
59.
Mixed radix
–
Mixed radix numeral systems are non-standard positional numeral systems in which the numerical base varies from position to position. Such numerical representation applies when a quantity is expressed using a sequence of units that are each a multiple of the smaller one. 32,5,7,45,15,500. ∞,7,24,60,60,1000 or as 32∞577244560.15605001000 In the tabular format, the digits are written above their base, and a semicolon indicates the radix point. In numeral format, each digit has its base attached as a subscript. The base for each digit is the number of corresponding units that make up the larger unit. As a consequence there is no base for the first digit, the most familiar example of mixed radix systems is in timekeeping and calendars. Western time radices include decimal centuries, decades and years as well as duodecimal months, trigesimal days, overlapped with base 52 weeks, one variant uses tridecimal months, quaternary weeks, and septenary days. Time is further divided by quadrivigesimal hours, sexagesimal minutes and seconds, a mixed radix numeral system can often benefit from a tabular summary. m. On Wednesday, and 070201202602460 would be 12,02,24 a. m. on Sunday, ad hoc notations for mixed radix numeral systems are commonplace. The Maya calendar consists of several overlapping cycles of different radices, a short count tzolkin overlaps vigesimal named days with tridecimal numbered days. A haab consists of vigesimal days, octodecimal months, and base-52 years forming a round, in addition, a long count of vigesimal days, octodecimal winal, then vigesimal tun, katun, baktun, etc. tracks historical dates. So, for example, in the UK, banknotes are printed for £50, £20, £10 and £5, mixed-radix numbers of the same base can be manipulated using a generalization of manual arithmetic algorithms. APL and J include operators to convert to and from mixed-radix systems, another proposal is the so-called factorial number system, For example, the biggest number that could be represented with six digits would be 543210 which equals 719 in decimal, 5×5. It might not be clear at first sight but the factorial based numbering system is unambiguous and complete. Every number can be represented in one and only one way because the sum of respective factorials multiplied by the index is always the next factorial minus one, −1 There is a natural mapping between the integers 0. N. −1 and permutations of n elements in lexicographic order, the above equation is a particular case of the following general rule for any radix base representation which expresses the fact that any radix base representation is unambiguous and complete. The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Über einfache Zahlensysteme, Zeitschrift für Math. Mixed Radix Calculator — Mixed Radix Calculator in C#
60.
List of numeral systems
–
This is a list of numeral systems, that is, writing systems for expressing numbers. Numeral systems are classified here as to whether they use positional notation, the common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name. In this Youtube video, Matt Parker jokingly invented a base-1082 system and this turns out to be 1925. Radix Radix economy Table of bases List of numbers in various languages Numeral prefix
61.
Digital electronics
–
Digital electronics or digital circuits are electronics that handle digital signals rather than by continuous ranges as used in analog electronics. All levels within a band of values represent the information state. In most cases, the number of states is two, and they are represented by two voltage bands, one near a reference value, and the other a value near the supply voltage. These correspond to the false and true values of the Boolean domain respectively, Digital techniques are useful because it is easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values. Digital electronic circuits are made from large assemblies of logic gates. The binary number system was refined by Gottfried Wilhelm Leibniz and he established that by using the binary system. Digital logic as we know it was the brain-child of George Boole, Boole died young, but his ideas lived on. In an 1886 letter, Charles Sanders Peirce described how logical operations could be carried out by electrical switching circuits, eventually, vacuum tubes replaced relays for logic operations. Lee De Forests modification, in 1907, of the Fleming valve can be used as an AND logic gate, ludwig Wittgenstein introduced a version of the 16-row truth table as proposition 5.101 of Tractatus Logico-Philosophicus. Walther Bothe, inventor of the circuit, got part of the 1954 Nobel Prize in physics. Mechanical analog computers started appearing in the first century and were used in the medieval era for astronomical calculations. In World War II, mechanical computers were used for specialized military applications such as calculating torpedo aiming. During this time the first electronic computers were developed. Originally they were the size of a room, consuming as much power as several hundred modern personal computers. The Z3 was a computer designed by Konrad Zuse, finished in 1941. It was the worlds first working programmable, fully automatic digital computer and its operation was facilitated by the invention of the vacuum tube in 1904 by John Ambrose Fleming. Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, the bipolar junction transistor was invented in 1947. From 1955 onwards transistors replaced vacuum tubes in computer designs, giving rise to the generation of computers
62.
Number
–
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1,2,3, a notational symbol that represents a number is called a numeral. In addition to their use in counting and measuring, numerals are used for labels, for ordering. In common usage, number may refer to a symbol, a word, calculations with numbers are done with arithmetical operations, the most familiar being addition, subtraction, multiplication, division, and exponentiation. Their study or usage is called arithmetic, the same term may also refer to number theory, the study of the properties of numbers. Besides their practical uses, numbers have cultural significance throughout the world, for example, in Western society the number 13 is regarded as unlucky, and a million may signify a lot. Though it is now regarded as pseudoscience, numerology, the belief in a significance of numbers, permeated ancient. Numerology heavily influenced the development of Greek mathematics, stimulating the investigation of problems in number theory which are still of interest today. During the 19th century, mathematicians began to develop many different abstractions which share certain properties of numbers, among the first were the hypercomplex numbers, which consist of various extensions or modifications of the complex number system. Numbers should be distinguished from numerals, the used to represent numbers. Boyer showed that Egyptians created the first ciphered numeral system, Greeks followed by mapping their counting numbers onto Ionian and Doric alphabets. The number five can be represented by digit 5 or by the Roman numeral Ⅴ, notations used to represent numbers are discussed in the article numeral systems. The Roman numerals require extra symbols for larger numbers, different types of numbers have many different uses. Numbers can be classified into sets, called number systems, such as the natural numbers, the same number can be written in many different ways. For different methods of expressing numbers with symbols, such as the Roman numerals, each of these number systems may be considered as a proper subset of the next one. This is expressed, symbolically, by writing N ⊂ Z ⊂ Q ⊂ R ⊂ C, the most familiar numbers are the natural numbers,1,2,3, and so on. Traditionally, the sequence of numbers started with 1 However, in the 19th century, set theorists. Today, different mathematicians use the term to both sets, including 0 or not
63.
0 (number)
–
0 is both a number and the numerical digit used to represent that number in numerals. The number 0 fulfills a role in mathematics as the additive identity of the integers, real numbers. As a digit,0 is used as a placeholder in place value systems, names for the number 0 in English include zero, nought or naught, nil, or—in contexts where at least one adjacent digit distinguishes it from the letter O—oh or o. Informal or slang terms for zero include zilch and zip, ought and aught, as well as cipher, have also been used historically. The word zero came into the English language via French zéro from Italian zero, in pre-Islamic time the word ṣifr had the meaning empty. Sifr evolved to mean zero when it was used to translate śūnya from India, the first known English use of zero was in 1598. The Italian mathematician Fibonacci, who grew up in North Africa and is credited with introducing the system to Europe. This became zefiro in Italian, and was contracted to zero in Venetian. The Italian word zefiro was already in existence and may have influenced the spelling when transcribing Arabic ṣifr, modern usage There are different words used for the number or concept of zero depending on the context. For the simple notion of lacking, the words nothing and none are often used, sometimes the words nought, naught and aught are used. Several sports have specific words for zero, such as nil in football, love in tennis and it is often called oh in the context of telephone numbers. Slang words for zero include zip, zilch, nada, duck egg and goose egg are also slang for zero. Ancient Egyptian numerals were base 10 and they used hieroglyphs for the digits and were not positional. By 1740 BC, the Egyptians had a symbol for zero in accounting texts. The symbol nfr, meaning beautiful, was used to indicate the base level in drawings of tombs and pyramids. By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated sexagesimal positional numeral system, the lack of a positional value was indicated by a space between sexagesimal numerals. By 300 BC, a symbol was co-opted as a placeholder in the same Babylonian system. In a tablet unearthed at Kish, the scribe Bêl-bân-aplu wrote his zeros with three hooks, rather than two slanted wedges, the Babylonian placeholder was not a true zero because it was not used alone
64.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few
65.
Logic gate
–
Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device. In modern practice, most gates are made from field-effect transistors, compound logic gates AND-OR-Invert and OR-AND-Invert are often employed in circuit design because their construction using MOSFETs is simpler and more efficient than the sum of the individual gates. In reversible logic, Toffoli gates are used, to build a functionally complete logic system, relays, valves, or transistors can be used. The simplest family of logic gates using bipolar transistors is called resistor-transistor logic, unlike simple diode logic gates, RTL gates can be cascaded indefinitely to produce more complex logic functions. RTL gates were used in integrated circuits. For higher speed and better density, the used in RTL were replaced by diodes resulting in diode-transistor logic. As integrated circuits became more complex, bipolar transistors were replaced with smaller field-effect transistors, to reduce power consumption still further, most contemporary chip implementations of digital systems now use CMOS logic. CMOS uses complementary MOSFET devices to achieve a high speed with low power dissipation, increasingly, these fixed-function logic gates are being replaced by programmable logic devices, which allow designers to pack a large number of mixed logic gates into a single integrated circuit. Other types of logic gates include, but are not limited to Electronic logic gates differ significantly from their relay-and-switch equivalents and they are much faster, consume much less power, and are much smaller. Also, there is a structural difference. The switch circuit creates a continuous path for current to flow between its input and its output. The semiconductor logic gate, on the hand, acts as a high-gain voltage amplifier. It is not possible for current to flow between the output and the input of a logic gate. Another important advantage of standardized integrated circuit logic families, such as the 7400 and 4000 families, is that they can be cascaded and this means that the output of one gate can be wired to the inputs of one or several other gates, and so on. The output of one gate can drive a finite number of inputs to other gates. Also, there is always a delay, called the propagation delay, when gates are cascaded, the total propagation delay is approximately the sum of the individual delays, an effect which can become a problem in high-speed circuits. The binary number system was refined by Gottfried Wilhelm Leibniz and he established that by using the binary system. In an 1886 letter, Charles Sanders Peirce described how logical operations could be carried out by electrical switching circuits, eventually, vacuum tubes replaced relays for logic operations
66.
Computer
–
A computer is a device that can be instructed to carry out an arbitrary set of arithmetic or logical operations automatically. The ability of computers to follow a sequence of operations, called a program, such computers are used as control systems for a very wide variety of industrial and consumer devices. The Internet is run on computers and it millions of other computers. Since ancient times, simple manual devices like the abacus aided people in doing calculations, early in the Industrial Revolution, some mechanical devices were built to automate long tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century, the first digital electronic calculating machines were developed during World War II. The speed, power, and versatility of computers has increased continuously and dramatically since then, conventionally, a modern computer consists of at least one processing element, typically a central processing unit, and some form of memory. The processing element carries out arithmetic and logical operations, and a sequencing, peripheral devices include input devices, output devices, and input/output devices that perform both functions. Peripheral devices allow information to be retrieved from an external source and this usage of the term referred to a person who carried out calculations or computations. The word continued with the same meaning until the middle of the 20th century, from the end of the 19th century the word began to take on its more familiar meaning, a machine that carries out computations. The Online Etymology Dictionary gives the first attested use of computer in the 1640s, one who calculates, the Online Etymology Dictionary states that the use of the term to mean calculating machine is from 1897. The Online Etymology Dictionary indicates that the use of the term. 1945 under this name, theoretical from 1937, as Turing machine, devices have been used to aid computation for thousands of years, mostly using one-to-one correspondence with fingers. The earliest counting device was probably a form of tally stick, later record keeping aids throughout the Fertile Crescent included calculi which represented counts of items, probably livestock or grains, sealed in hollow unbaked clay containers. The use of counting rods is one example, the abacus was initially used for arithmetic tasks. The Roman abacus was developed from used in Babylonia as early as 2400 BC. Since then, many forms of reckoning boards or tables have been invented. In a medieval European counting house, a checkered cloth would be placed on a table, the Antikythera mechanism is believed to be the earliest mechanical analog computer, according to Derek J. de Solla Price. It was designed to calculate astronomical positions and it was discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to circa 100 BC
67.
Thomas Harriot
–
Thomas Harriot — or spelled Harriott, Hariot, or Heriot — was an English astronomer, mathematician, ethnographer, and translator. He is sometimes credited with the introduction of the potato to the British Isles, Harriot was the first person to make a drawing of the Moon through a telescope, on 26 July 1609, over four months before Galileo. After graduating from St Mary Hall, Oxford, Harriot travelled to the Americas, accompanying the 1585 expedition to Roanoke island funded by Sir Walter Raleigh and led by Sir Ralph Lane. Harriot was a member of the venture, having translated and learned the Carolina Algonquian language from two Native Americans, Wanchese and Manteo. On his return to England he worked for the 9th Earl of Northumberland, at the Earls house, he became a prolific mathematician and astronomer to whom the theory of refraction is attributed. Born in 1560 in Oxford, England, Thomas Harriot attended St Mary Hall and his name appears in the halls registry dating from 1577. Prior to his expedition with Raleigh, Harriot wrote a treatise on navigation, in addition, he made efforts to communicate with Manteo and Wanchese, two Native Americans who had been brought to England. Harriot devised an alphabet to transcribe their Carolina Algonquian language. Harriot and Manteo spent many days in one company, Harriot interrogated Manteo closely about life in the New World. In addition, he recorded the sense of awe with which the Native Americans viewed European technology, Many things they sawe with us. as mathematical instruments, as the only Englishman who had learned Algonkin prior to the voyage, Harriot was vital to the success of the expedition. His account of the voyage, named A Briefe and True Report of the New Found Land of Virginia, was published in 1588. The True Report contains an account of the Native American population encountered by the expedition, it proved very influential upon later English explorers. He wrote, Whereby it may be hoped, if means of government be used, that they may in short time be brought to civility. At the same time, his views of Native Americans industry and capacity to learn were later largely ignored in favour of the parts of the True Report about extractable minerals and resources. As a scientific adviser during the voyage, Harriot was asked by Raleigh to find the most efficient way to stack cannonballs on the deck of the ship. His ensuing theory about the close-packing of spheres shows a resemblance to atomism and modern atomic theory. His correspondence about optics with Johannes Kepler, in which he described some of his ideas, Harriott was employed for many years by Henry Percy, 9th Earl of Northumberland, with whom he resided at Syon House, which was run by Henry Percys cousin Thomas Percy. Harriot himself was interrogated and briefly imprisoned but was soon released, Walter Warner, Robert Hues, William Lower, and other scientists were present around the Earl of Northumberlands mansion as they worked for him and assisted in the teaching of the familys children
68.
Juan Caramuel y Lobkowitz
–
Juan Caramuel y Lobkowitz was a Spanish Catholic scholastic philosopher, ecclesiastic, mathematician and writer. He was a child, early delving into serious problems in mathematics. After receiving an education at college, where his unusual ability brought rapid advancement. He was received into the Cistercian Order at the monastery of La Espina, in the diocese of Palencia, when he was obliged to leave the Electorate of the Palatinate, Philip IV of Spain made him his envoy to the court of Emperor Ferdinand III. He was in turn Abbot of Melrose, Scotland, Abbot-Superior of the Benedictines of Vienna, in 1648, when the Swedes attacked Prague, he armed and led a band of ecclesiastics who did yeoman service in the defence of the city. His bravery on this occasion merited for him a collar of gold from the emperor, soon after he became Bishop of Satrianum, then Campagna, and at his death was Bishop of Vigevano. He loved to defend novel theories, and in Theologia moralis ad prima atque clarissima principia reducta tried to solve problems by mathematical rules. He was an exponent of probabilism and his permissive moral opinions were criticized in Pascals Provincial Letters. His mathematical work centred on combinatorics and he was one of the writers on probability. The Cardinal was also responsible for the design of the facade of the Vigevano Cathedral, respuesta al Manifiesto del Reyno de Portugal, Antwerp,1641. Rationalis et realis philosophia, Leuven,1642, Theologia moralis fundamentalis, praeterintentionalis, decalogica, sacramentalis, canonica, regularis, civilis, militaris, Frankfurt, 1652–1653. Theologia moralis fundamentalis, editio secunda, Rome,1656, mathesis biceps, vetus et nova, Campagna - Lyons,1670. J. Fleming, Defending Probabilism, The Moral Theology of Juan Caramuel, Washington DC, Juan Caramuel y Lobkowitz, article from the Catholic Encyclopedia This article incorporates text from a publication now in the public domain, Herbermann, Charles, ed. Juan Caramuel y Lobkowitz. Yanez Neira, Masolivier, Romereo, de Pascual, Juan Caramuel y Lobkowitz, in, Cistercium 262, omaggio a Juan Caramuel Y Lobkowitz. Un genio scientifico in epoca barocca
69.
Gottfried Leibniz
–
Leibnizs notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and he became one of the most prolific inventors in the field of mechanical calculators. He also refined the number system, which is the foundation of virtually all digital computers. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th-century advocates of rationalism and he wrote works on philosophy, politics, law, ethics, theology, history, and philology. Leibnizs contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters and he wrote in several languages, but primarily in Latin, French, and German. There is no complete gathering of the writings of Leibniz in English, Gottfried Leibniz was born on July 1,1646, toward the end of the Thirty Years War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his journal,21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, in English, On Sunday 21 June 1646, my son Gottfried Wilhelm is born into the world a quarter after six in the evening, in Aquarius. Leibniz was baptized on July 3 of that year at St. Nicholas Church, Leipzig and his father died when he was six and a half years old, and from that point on he was raised by his mother. Her teachings influenced Leibnizs philosophical thoughts in his later life, Leibnizs father had been a Professor of Moral Philosophy at the University of Leipzig, and the boy later inherited his fathers personal library. He was given access to it from the age of seven. Access to his fathers library, largely written in Latin, also led to his proficiency in the Latin language and he also composed 300 hexameters of Latin verse, in a single morning, for a special event at school at the age of 13. In April 1661 he enrolled in his fathers former university at age 15 and he defended his Disputatio Metaphysica de Principio Individui, which addressed the principle of individuation, on June 9,1663. Leibniz earned his masters degree in Philosophy on February 7,1664, after one year of legal studies, he was awarded his bachelors degree in Law on September 28,1665. His dissertation was titled De conditionibus, in early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria, the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. His next goal was to earn his license and Doctorate in Law, in 1666, the University of Leipzig turned down Leibnizs doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, the title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure. Leibniz earned his license to practice law and his Doctorate in Law in November 1666 and he next declined the offer of an academic appointment at Altdorf, saying that my thoughts were turned in an entirely different direction
70.
I Ching
–
The I Ching, or Classic of Changes, is an ancient divination text and the oldest of the Chinese classics. The I Ching uses a type of divination called cleromancy, which produces apparently random numbers. Four numbers,6 to 9, are turned into a hexagram, the hexagrams themselves have often acquired cosmological significance and paralleled with many other traditional names for the processes of change such as yin and yang and Wu Xing. The core of the I Ching is a Western Zhou divination text called the Changes of Zhou, various modern scholars suggest dates ranging between the 10th and 4th centuries BC for the assembly of the text in approximately its current form. It is possible that other systems existed at this time. The name Zhou yi literally means the changes of the Zhou dynasty, the changes involved have been interpreted as the transformations of hexagrams, of their lines, or of the numbers obtained from the divination. Feng Youlan proposed that the word for changes originally meant easy, as in a form of divination easier than the oracle bones, there is also an ancient folk etymology that sees the character for changes as containing the sun and moon, the cycle of the day. Modern Sinologists believe the character to be derived either from an image of the sun emerging from clouds, the Zhou yi was traditionally ascribed to the Zhou cultural heroes King Wen of Zhou and the Duke of Zhou, and was also associated with the legendary world ruler Fu Xi. The Zhou yi itself does not contain this legend and indeed says nothing about its own origins, the Rites of Zhou, however, also claims that the hexagrams of the Zhou yi were derived from an initial set of eight trigrams. During the Han dynasty there were various opinions about the relationship between the trigrams and the hexagrams. The basic unit of the Zhou yi is the hexagram, a composed of six stacked horizontal lines. Each line is broken or unbroken. The received text of the Zhou yi contains all 64 possible hexagrams, along with the name, a short hexagram statement. The book opens with the first hexagram statement, yuán hēng lì zhēn, edward Shaughnessy describes this statement as affirming an initial receipt of an offering, beneficial for further divining. The word zhēn was also used for the divine in the oracle bones of the late Shang dynasty. It also carried meanings of being or making upright or correct, the names of the hexagrams are usually words that appear in their respective line statements, but in five cases an unrelated character of unclear purpose appears. The hexagram names could have been chosen arbitrarily from the line statements, the line statements, which make up most of the book, are exceedingly cryptic. Each line begins with a word indicating the number, base,2,3,4,5, top
71.
Ancient Egyptian mathematics
–
Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c.3000 to c.300 BC. Written evidence of the use of mathematics dates back to at least 3000 BC with the ivory labels found in Tomb U-j at Abydos and these labels appear to have been used as tags for grave goods and some are inscribed with numbers. Further evidence of the use of the base 10 number system can be found on the Narmer Macehead which depicts offerings of 400,000 oxen,1,422,000 goats and 120,000 prisoners. The evidence of the use of mathematics in the Old Kingdom is scarce, the lines in the diagram are spaced at a distance of one cubit and show the use of that unit of measurement. The earliest true mathematical documents date to the 12th dynasty, the Rhind Mathematical Papyrus which dates to the Second Intermediate Period is said to be based on an older mathematical text from the 12th dynasty. The Moscow Mathematical Papyrus and Rhind Mathematical Papyrus are so-called mathematical problem texts and they consist of a collection of problems with solutions. These texts may have been written by a teacher or a student engaged in solving typical mathematics problems, an interesting feature of Ancient Egyptian mathematics is the use of unit fractions. Scribes used tables to help work with these fractions. The Egyptian Mathematical Leather Roll for instance is a table of unit fractions which are expressed as sums of unit fractions. The Rhind Mathematical Papyrus and some of the other texts contain 2 n tables and these tables allowed the scribes to rewrite any fraction of the form 1 n as a sum of unit fractions. During the New Kingdom mathematical problems are mentioned in the literary Papyrus Anastasi I, in the workers village of Deir el-Medina several ostraca have been found that record volumes of dirt removed while quarrying the tombs. Our understanding of ancient Egyptian mathematics is impeded by the paucity of available sources. The Reisner Papyrus dates to the early Twelfth dynasty of Egypt and was found in Nag el-Deir, the Rhind Mathematical Papyrus dates from the Second Intermediate Period, but its author, Ahmes, identifies it as a copy of a now lost Middle Kingdom papyrus. The RMP is the largest mathematical text, from the New Kingdom we have a handful of mathematical texts and inscription related to computations, The Papyrus Anastasi I is a literary text from the New Kingdom. It is written as a written by a scribe named Hori. A segment of the letter describes several mathematical problems, ostracon Senmut 153 is a text written in hieratic. Ostracon Turin 57170 is a written in hieratic. Ostraca from Deir el-Medina contain computations, ostracon IFAO1206 for instance shows the calculations of volumes, presumably related to the quarrying of a tomb
72.
Egyptian fraction
–
An Egyptian fraction is a finite sum of distinct unit fractions, such as 12 +13 +116. That is, each fraction in the expression has an equal to 1 and a denominator that is a positive integer. The value of an expression of type is a positive rational number a/b. Every positive rational number can be represented by an Egyptian fraction, in modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern theory and recreational mathematics. Beyond their historical use, Egyptian fractions have some advantages over other representations of fractional numbers. For instance, Egyptian fractions can help in dividing a number of objects into equal shares, for more information on this subject, see Egyptian numerals, Eye of Horus, and Egyptian mathematics. Egyptian fraction notation was developed in the Middle Kingdom of Egypt, five early texts in which Egyptian fractions appear were the Egyptian Mathematical Leather Roll, the Moscow Mathematical Papyrus, the Reisner Papyrus, the Kahun Papyrus and the Akhmim Wooden Tablet. A later text, the Rhind Mathematical Papyrus, introduced improved ways of writing Egyptian fractions, the Rhind papyrus was written by Ahmes and dates from the Second Intermediate Period, it includes a table of Egyptian fraction expansions for rational numbers 2/n, as well as 84 word problems. Solutions to each problem were written out in scribal shorthand, with the answers of all 84 problems being expressed in Egyptian fraction notation. 2/n tables similar to the one on the Rhind papyrus also appear on some of the other texts, however, as the Kahun Papyrus shows, vulgar fractions were also used by scribes within their calculations. To write the unit used in their Egyptian fraction notation, in hieroglyph script. Similarly in hieratic script they drew a line over the letter representing the number. For example, The Egyptians had special symbols for 1/2, 2/3, the remaining number after subtracting one of these special fractions was written using as a sum of distinct unit fractions according to the usual Egyptian fraction notation. These have been called Horus-Eye fractions after a theory that they were based on the parts of the Eye of Horus symbol, the unit fraction 1/n is expressed as n, and the fraction 2/n is expressed as n, and the plus sign “＋” is omitted. For example, 2/3 = 1/2 + 1/6 is expressed as 3 =26, modern historians of mathematics have studied the Rhind papyrus and other ancient sources in an attempt to discover the methods the Egyptians used in calculating with Egyptian fractions. In particular, study in this area has concentrated on understanding the tables of expansions for numbers of the form 2/n in the Rhind papyrus, although these expansions can generally be described as algebraic identities, the methods used by the Egyptians may not correspond directly to these identities. This method is available for not only odd prime denominators but also all odd denominators, for larger prime denominators, an expansion of the form 2/p = 1/A + 2A − p/Ap was used, where A is a number with many divisors between p/2 and p
73.
Eye of Horus
–
The Eye of Horus is an ancient Egyptian symbol of protection, royal power and good health. The eye is personified in the goddess Wadjet, the Eye of Horus is similar to the Eye of Ra, which belongs to a different god, Ra, but represents many of the same concepts. Wadjet was one of the earliest of Egyptian deities who later associated with other goddesses such as Bast, Sekhmet, Mut. She was the deity of Lower Egypt and the major Delta shrine the per-nu was under her protection. Hathor is also depicted with this eye, funerary amulets were often made in the shape of the Eye of Horus. The Wadjet or Eye of Horus is the element of seven gold, faience, carnelian. The Wedjat was intended to protect the pharaoh in the afterlife, Ancient Egyptian and Middle-Eastern sailors would frequently paint the symbol on the bow of their vessel to ensure safe sea travel. Horus was the ancient Egyptian sky god who was depicted as a falcon. His right eye was associated with the sun god, Ra, the eye symbol represents the marking around the eye of the falcon, including the teardrop marking sometimes found below the eye. The mirror image, or left eye, sometimes represented the moon, in one myth, when Set and Horus were fighting for the throne after Osiriss death, Set gouged out Horuss left eye. The majority of the eye was restored by either Hathor or Thoth, when Horuss eye was recovered, he offered it to his father, Osiris, in hopes of restoring his life. Hence, the eye of Horus was often used to sacrifice, healing, restoration. There are seven different hieroglyphs used to represent the eye, most commonly ir. t in Egyptian, in Egyptian myth the eye was not the passive organ of sight but more an agent of action, protection or wrath. The Eye of Horus was represented as a hieroglyph, designated D10 in Gardiners sign list and it is represented in the Unicode character block for Egyptian hieroglyphs as U+13080. In Ancient Egyptian most fractions were written as the sum of two or more unit fractions, with scribes possessing tables of answers, thus instead of 3⁄4, one would write 1⁄2 + 1⁄4. Studies from the 1970s to this day in Egyptian mathematics have clearly shown this theory was fallacious, the evolution of the symbols used in mathematics, although similar to the different parts of the Eye of Horus, is now known to be distinct. Wadjet eye tatoos associated with Hathor depicted on 3, 000-year-old mummy
74.
Horus
–
Horus is one of the most significant ancient Egyptian deities. He was worshipped from at least the late prehistoric Egypt until the Ptolemaic Kingdom, different forms of Horus are recorded in history and these are treated as distinct gods by Egyptologists. He was most often depicted as a falcon, most likely a falcon or peregrine falcon. In another tradition Hathor is regarded as his mother and sometimes as his wife, Horus served many functions, most notably being a god of the sky, war and hunting. Horus is recorded in Egyptian hieroglyphs as ḥr. w Falcon, additional meanings are thought to have been the distant one or one who is above, over. As the language changed over time, it appeared in Coptic dialects variously as hoːɾ or ħoːɾ and was adopted into ancient Greek as Ὧρος Hōros and it also survives in Late Egyptian and Coptic theophoric names such as Har-si-ese Horus, Son of Isis. Nekheny may have been another falcon god worshipped at Nekhen, city of the falcon, Horus may be shown as a falcon on the Narmer Palette, dating from about the 31st century BC. In early Egypt, Horus was the brother of Isis, Osiris, Set, as different cults formed, he became the son of Isis and Osiris. Isis remained the sister of Osiris, Set and Nephthys, the Pyramid Texts describe the nature of the pharaoh in different characters as both Horus and Osiris. The pharaoh as Horus in life became the pharaoh as Osiris in death, New incarnations of Horus succeeded the deceased pharaoh on earth in the form of new pharaohs. The lineage of Horus, the product of unions between the children of Atum, may have been a means to explain and justify pharaonic power. The gods produced by Atum were all representative of cosmic and terrestrial forces in Egyptian life, the notion of Horus as the pharaoh seems to have been superseded by the concept of the pharaoh as the son of Ra during the Fifth Dynasty. Once Isis knew she was pregnant with Horus, she fled to the Nile Delta marshlands to hide from her brother Set, who jealously killed Osiris, there Isis bore a divine son, Horus. Since Horus was said to be the sky, he was considered to contain the sun. It became said that the sun was his eye and the moon his left, and that they traversed the sky when he. Later, the reason that the moon was not as bright as the sun was explained by a tale, known as the The Contendings of Horus and Seth. As Horus was the victor he became known as ḥr. w wr Horus the Great. In the struggle, Set had lost a testicle, explaining why the desert, Horus left eye had also been gouged out, then a new eye was created by part of Khonsu, the moon god, and was replaced
75.
Nineteenth Dynasty of Egypt
–
The Nineteenth Dynasty of ancient Egypt was one of the periods of the Egyptian New Kingdom. Founded by Vizier Ramesses I, whom Pharaoh Horemheb chose as his successor to the throne, the warrior kings of the early 18th Dynasty had encountered only little resistance from neighbouring kingdoms, allowing them to expand their realm of influence easily. The situation had changed radically towards the end of the 18th Dynasty, the Hittites gradually extended their influence into Syria and Canaan to become a major power in international politics, a power that both Seti I and his son Ramesses II would need to deal with. The Pharaohs of the 19th dynasty ruled for one hundred and ten years. Seti Is reign is considered to be 11 years and not 15 years by both J. von Beckerath and Peter Brand, who wrote a biography on this pharaohs reign. Consequently, it will be amended to 11 years or 1290-1279 BC, therefore, Setis father and predecessor would have ruled Egypt between 1292-1290 BC. Many of the pharaohs were buried in the Valley of the Kings in Thebes, more information can be found on the Theban Mapping Project website. New Kingdom Egypt reached the zenith of its power under Seti I and Ramesses II, who campaigned vigorously against the Libyans and the Hittites. The city of Kadesh was first captured by Seti I, who decided to concede it to Muwatalli of Hatti in a peace treaty between Egypt and Hatti. He ultimately accepted that a campaign against the Hittites was a drain on Egypts treasury and military. In his 21st regnal year, Ramesses signed the first recorded peace treaty with Urhi-Teshubs successor, Hattusili III, Ramesses II even married two Hittite princesses, the first after his second Sed Festival. At least as early as Josephus, it was believed that Moses lived during the reign of Ramesses II and this dynasty declined as internal fighting between the heirs of Merneptah for the throne increased. Amenmesse apparently usurped the throne from Merneptahs son and successor, Seti II, after his death, Seti regained power and destroyed most of Amenmesses monuments. Both Bay and Setis chief wife Twosret had a reputation in Ancient Egyptian folklore. After Siptahs death, Twosret ruled Egypt for two years, but she proved unable to maintain her hold on power amid the conspiracies. She was likely ousted in a revolt led by Setnakhte, founder of the Twentieth Dynasty, Nineteenth dynasty of Egypt Family Tree
76.
Rhind Mathematical Papyrus
–
The Rhind Mathematical Papyrus is one of the best known examples of Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian and it dates to around 1550 BC. It is one of the two well-known Mathematical Papyri along with the Moscow Mathematical Papyrus, the Rhind Papyrus is larger than the Moscow Mathematical Papyrus, while the latter is older than the former. The Rhind Mathematical Papyrus dates to the Second Intermediate Period of Egypt and it was copied by the scribe Ahmes, from a now-lost text from the reign of king Amenemhat III. Written in the script, this Egyptian manuscript is 33 cm tall. The papyrus began to be transliterated and mathematically translated in the late 19th century, the mathematical translation aspect remains incomplete in several respects. The document is dated to Year 33 of the Hyksos king Apophis and also contains a separate later historical note on its verso likely dating from the period of his successor, Khamudi. In the opening paragraphs of the papyrus, Ahmes presents the papyrus as giving Accurate reckoning for inquiring into things, the scribe Ahmose writes this copy. Several books and articles about the Rhind Mathematical Papyrus have been published, a more recent overview of the Rhind Papyrus was published in 1987 by Robins and Shute. The first part of the Rhind papyrus consists of reference tables, the problems start out with simple fractional expressions, followed by completion problems and more involved linear equations. The first part of the papyrus is taken up by the 2/n table, the fractions 2/n for odd n ranging from 3 to 101 are expressed as sums of unit fractions. For example,2 /15 =1 /10 +1 /30. The decomposition of 2/n into unit fractions is never more than 4 terms long as in for example 2 /101 =1 /101 +1 /202 +1 /303 +1 /606. This table is followed by a smaller, tiny table of fractional expressions for the numbers 1 through 9 divided by 10. Problems 1-7, 7B and 8-40 are concerned with arithmetic and elementary algebra, problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4 and 1 + 2/3 + 1/3 =2 by different fractions, problems 21–23 are problems in completion, which in modern notation are simply subtraction problems. Problems 24–34 are ‘’aha’’ problems, these are linear equations, problem 32 for instance corresponds to solving x + 1/3 x + 1/4 x =2 for x. Problems 35–38 involve divisions of the heqat, which is an ancient Egyptian unit of volume, problems 39 and 40 compute the division of loaves and use arithmetic progressions
77.
I Ching divination
–
Among the many forms of divination is a cleromancy method using the I Ching or Book of Changes. I Ching consists of sixty-four hexagrams and commentary upon those symbols, each hexagram is six lines, each one of which is either yin or yang. By randomly generating the six lines by one or other of various methods and then reading the commentary associated with the resulting hexagram, historical and philosophical information, as well as a list of English translations, can be found here. Several of the methods of consultation produce one number per application of a more or less complex procedure, simpler procedures can also be used. Several of the methods described below force exactly one, or no, moving lines, the yarrow-stalk method favours static lines over moving lines in the ratio 3,1, and favours old yang to old yin in the same ratio. Plastromancy or the turtle shell oracle is probably the earliest recorded form of fortune telling, the diviner would apply heat to a piece of a turtle shell, and interpret the resulting cracks. The cracks were sometimes annotated with inscriptions, the oldest Chinese writings that have been discovered and this oracle predated the earliest versions of the Zhou Yi by hundreds of years. A variant on this method was to use ox shoulder bones, when thick material was to be cracked, the underside was thinned by carving with a knife. Hexagrams may be generated by the manipulation of yarrow stalks and these are usually genuine Achillea millefolium stalks that have been cut and prepared for such purposes or any form of wooden rod or sticks which are plain, lacquered or varnished. When not in use, they are kept in a cloth or silk bag/pouch or a wooden case/box, fifty yarrow stalks are used, though one stalk is set aside at the beginning and takes no further part in the process of consultation. The remaining forty-nine stalks are roughly sorted into two piles, and then for each pile one stalk is initially remaindered then the pile is cast off in lots of four, the remainders from each half are combined and set aside, with the process then repeated twice. The total stalks in the pile will necessarily be 9 or 5 in the first count and 8 or 4 in the second. 9 or 8 is assigned a value of 2,5 or 4 a value of 3, the total of the three passes will be one of just four values,6,7,8, or 9, that count provides the number of the first line. The forty-nine stalks are gathered and the entire procedure repeated to generate each of the remaining five lines of the hexagram. The yarrow-stalk method produces unequal probabilities for obtaining each of the four totals, note that The Yarrow Algorithm is the name of a particular algorithm for generating random numbers. While it is named after the I Ching yarrow method, the details of the algorithm are unrelated to it, whereas yarrow stalks produce four different probabilities for each of the four lines occurring, coin-tossing produces pairs of probabilities. The probability of getting a yin or a line is the same by both methods, so the probability of getting any particular hexagram is the same in each method. However, the probabilities of getting old, changing lines are different, the three coin method came into currency over a thousand years later
78.
Yin and yang
–
Many tangible dualities are thought of as physical manifestations of the duality symbolized by yin and yang. Duality is found in many systems, but Yin and Yang are parts of a Oneness that is also equated with the Tao. A term has been coined dualistic-monism or dialectical monism, Yin and yang can be thought of as complementary forces that interact to form a dynamic system in which the whole is greater than the assembled parts. Everything has both yin and yang aspects, either of the two major aspects may manifest more strongly in a particular object, depending on the criterion of the observation. The yin yang shows a balance between two opposites with a portion of the element in each section. In Taoist metaphysics, distinctions between good and bad, along with other dichotomous moral judgments, are perceptual, not real, so, the duality of yin and yang is an indivisible whole. In the ethics of Confucianism on the hand, most notably in the philosophy of Dong Zhongshu. The Chinese terms yīn 陰 or 阴 shady side and yáng 陽 or 阳 sunny side are linguistically analyzable in terms of Chinese characters, pronunciations and etymology, meanings, topography, and loanwords. The first phonetic yīn 侌 cloudy ideographically combines jīn 今 now, present and yún 云 cloud, the second phonetic yáng 昜 bright originally pictured 日 the sun with 勿 rays coming down. This phonetic is expanded with the sun radical into yáng 暘 rising sun, the mound, hill radical 阝full forms semantically specify yīn 陰 shady/dark side of a hill and yáng 陽 sunny/light side of a hill. Compare the Classical Chinese names for these two bodies, Tàiyīn 太陰 moon and Tàiyáng 太陽 sun. Reconstructions of Old Chinese have illuminated the etymology of modern Chinese words, Yin and yang are semantically complex words. A reliable Chinese-English dictionary gives the translation equivalents. Many Chinese place names or toponyms contain the word yang sunny side, similarly, yin refers to north side of a hill in Huayin 華陰, which is north of Mount Hua 華山 in Shaanxi province. English yin, yang, and yin-yang are familiar loanwords of Chinese origin, the Oxford English Dictionary defines, yin Also Yin, Yn. a. Also attrib. or as adj. and transf, comb. as yin-yang, the combination or fusion of the two cosmic forces, freq. attrib. Esp. as yin-yang symbol, a divided by an S-shaped line into a dark. Comb. yang-yin = yin-yang s. v. yin b, for the earliest recorded yin and yang usages, the OED cites 1671 for yin and yang,1850 for yin-yang, and 1959 for yang-yin