From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Hughes Brazo.jpg
Brazo/PAVE ARM missile
Type Anti-radiation missile
Place of origin United States
Service history
Used by United States Air Force; United States Navy
Production history
Designed 1972-1973
Manufacturer Hughes Aircraft
Length 12.0 feet (3.66 m)
Diameter 8 inches (200 mm)
Warhead Continuous rod
Warhead weight 65 pounds (29 kg)

Engine Rocketdyne Mk 38
Wingspan 3.3 feet (1.02 m)
Propellant Solid fuel
16 nautical miles (30 km; 18 mi)
Speed Mach 4

The Brazo (/ˈbrɑːs/) missile was an American project, intended to produce an anti-radiation missile for air-to-air use. Developed by Hughes Aircraft and based on the AIM-7 Sparrow air-to-air missile, the Brazo underwent a series of successful test firings; however, the program was terminated at the end of its test program.

Design and development[edit]

A joint development project between Hughes Aircraft and the United States Navy,[1] the Brazo missile (named as a pun by one of the project's Navy developers, a Hispanic; "Brazo" is Spanish for "Arm", the acronym for an Anti-Radiation Missile[2]) project was initiated in 1972, as a proof-of-concept demonstration of the utility of an air-to-air, anti-radar missile.[1] In 1973, the United States Air Force's Pave Arm project, a program with similar goals, was merged into the Brazo program, with the Air Force assuming responsibility for testing the missile.[3]

The first air-to-air anti-radiation missile developed by the United States,[4] the Brazo utilised the airframe of the existing AIM-7E Sparrow air-to-air missile, fitted with a new, Hughes-built passive radar seeker head developed by the Naval Electronics Center.[5] The seeker was intended to detect and home on enemy radar emissions, such as those on interceptor and AWACS aircraft.[6]

Operational history[edit]

The first test firing of the Brazo missile was conducted in April 1974, with the missile, launched from a USAF F-4D Phantom II,[7] successfully shooting down a BQM-34 Firebee drone; four follow-up tests over the following year continued the missile's successful record, with none of the test shots failing[1] despite difficult test conditions.[3] However, despite the Brazo's success, the follow-on ERASE (Electro-magnetic RAdiation Source Elimination) project was cancelled,[8] and no air-to-air antiradiation missiles would enter service in the West.[9]

See also[edit]


  1. ^ a b c Parsch 2003
  2. ^ Stevenson 2001, p.18.
  3. ^ a b Friedman 1982, p.179.
  4. ^ Morison and Rowe 1975, p.282.
  5. ^ Fitzsimons 1978, p.425.
  6. ^ Gunston 1977, p.96.
  7. ^ International Aeronautic Federation (1974). Interavia volume 29, p.603.
  8. ^ Bidwell 1978, p.165.
  9. ^ Sweetman 1987, p.160.
  • Bidewell, Shelford (1978). World War 3: A Military Projection Founded on Today's Facts. London: Hamlyn Publishing Group. ISBN 978-0-600-39416-7. 
  • Fitzsimons, Bernard (1978). The Illustrated Encyclopedia of 20th Century Weapons and Warfare. Columbia House. ASIN B000RUOW6Q. 
  • Friedman, Norman (1982). U.S. Naval Weapons: Every gun, missile mine and torpedo used by the US Navy from 1883 to the present day. Annapolis, MD: Naval Institute Press. ISBN 978-0-87021-735-7. 
  • Gunston, Bill (1977). F-4 Phantom. New York: Scribner. ISBN 978-0-684-15298-1. 
  • Morison, Samuel L.; John S. Rowe (1975). The Ships & Aircraft of the U.S. Fleet (10th ed.). Annapolis, MD: United States Naval Institute. ISBN 0-87021-639-2. 
  • Parsch, Andreas (2003). "Hughes Brazo". Directory of U.S. Military Rockets and Missiles. Retrieved 2010-12-29. 
  • Stevenson, James Perry (2001). The $5 Billion Misunderstanding: The Collapse of the Navy's A-12 Stealth Bomber Program. Annapolis, MD: Naval Institute Press. ISBN 978-1-55750-777-8. 
  • Sweetman, Bill (1987). Advanced Fighter Technology: The Future of Cockpit Combat. Osceola, WI: Motorbooks International. ISBN 978-0-87938-265-0.