1.
Octahedral symmetry
–
A regular octahedron has 24 rotational symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has the set of symmetries, since it is the dual of an octahedron. Chiral and full octahedral symmetry are the point symmetries with the largest symmetry groups compatible with translational symmetry. They are among the point groups of the cubic crystal system. But as it is also the direct product S4 × S2, one can identify the elements of S4 as a ∈ [0,4. ). So e. g. the identity is represented as 0, the pairs can be seen in the six files below. Each file is denoted by the m ∈, and the position of each permutation in the file corresponds to the n ∈. A rotoreflection is a combination of rotation and reflection,7 ′ ∘4 =19 ′,7 ′ ∘22 =17 ′, The reflection 7 ′ applied on the 90° rotation 22 gives the 90° rotoreflection 17 ′. O,432, or + of order 24, is chiral octahedral symmetry or rotational octahedral symmetry. This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, Td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, O is the rotation group of the cube and the regular octahedron. Oh, *432, or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry and this group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4. C4, and is the symmetry group of the cube. It is the group for n =3. See also the isometries of the cube, with the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z =1. Ax + by + cz =1 gives a polyhedron with 48 faces, faces are 8-by-8 combined to larger faces for a = b =0 and 6-by-6 for a = b = c. The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6, representing in two orthogonal subsymmetries, D2h, and Td, D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations
2.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
3.
Crystal habit
–
In mineralogy, crystal habit is the characteristic external shape of an individual crystal or crystal group. A single crystals habit is a description of its shape and its crystallographic forms. Recognizing the habit may help in identifying a mineral, when the faces are well-developed due to uncrowded growth a crystal is called euhedral, one with partially developed faces is subhedral, and one with undeveloped crystal faces is called anhedral. The long axis of a quartz crystal typically has a six-sided prismatic habit with parallel opposite faces. Aggregates can be formed of individual crystals with euhedral to anhedral grains, the arrangement of crystals within the aggregate can be characteristic of certain minerals. For example, minerals used for asbestos insulation often grow in a fibrous habit, the terms used by mineralogists to report crystal habits describe the typical appearance of an ideal mineral. Recognizing the habit can aid in identification as some habits are characteristic, most minerals, however, do not display ideal habits due to conditions during crystallization. Minerals belonging to the crystal system do not necessarily exhibit the same habit. Some habits of a mineral are unique to its variety and locality, For example, while most sapphires form elongate barrel-shaped crystals, ordinarily, the latter habit is seen only in ruby. Sapphire and ruby are both varieties of the mineral, corundum. Some minerals may replace other existing minerals while preserving the originals habit, a classic example is tigers eye quartz, crocidolite asbestos replaced by silica. While quartz typically forms prismatic crystals, in tigers eye the original fibrous habit of crocidolite is preserved, the names of crystal habits are derived from, Predominant crystal faces. Abnormal grain growth Grain growth Crystallization
4.
Garnet
–
Garnets are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, the different species are pyrope, almandine, spessartine, grossular, uvarovite and andradite. The garnets make up two solid solution series, pyrope-almandine-spessartine and uvarovite-grossular-andradite, the word garnet comes from the 14th‑century Middle English word gernet, meaning dark red. It is derived from the Latin granatus, from granum, Garnet species are found in many colors including red, orange, yellow, green, purple, brown, blue, black, pink, and colorless, with reddish shades most common. Garnet species light transmission properties can range from the gemstone-quality transparent specimens to the varieties used for industrial purposes as abrasives. The minerals luster is categorized as vitreous or resinous, garnets are nesosilicates having the general formula X3Y23. The X site is occupied by divalent cations 2+ and the Y site by trivalent cations 3+ in an octahedral/tetrahedral framework with 4− occupying the tetrahedra. Garnets are most often found in the crystal habit, but are also commonly found in the trapezohedron habit. They crystallize in the system, having three axes that are all of equal length and perpendicular to each other. Garnets do not show cleavage, so when they fracture under stress, because the chemical composition of garnet varies, the atomic bonds in some species are stronger than in others. As a result, this group shows a range of hardness on the Mohs scale of about 6.5 to 7.5. The harder species like almandine are often used for abrasive purposes, for gem identification purposes, a pick-up response to a strong neodymium magnet separates garnet from all other natural transparent gemstones commonly used in the jewelry trade. Almandine, Fe3Al23 Pyrope, Mg3Al23 Spessartine, Mn3Al23 Almandine, sometimes incorrectly called almandite, is the modern gem known as carbuncle, the term carbuncle is derived from the Latin meaning live coal or burning charcoal. The name Almandine is a corruption of Alabanda, a region in Asia Minor where these stones were cut in ancient times, chemically, almandine is an iron-aluminium garnet with the formula Fe3Al23, the deep red transparent stones are often called precious garnet and are used as gemstones. Almandine occurs in metamorphic rocks like mica schists, associated with such as staurolite, kyanite, andalusite. Almandine has nicknames of Oriental garnet, almandine ruby, and carbuncle, Pyrope is red in color and chemically an aluminium silicate with the formula Mg3Al23, though the magnesium can be replaced in part by calcium and ferrous iron. The color of pyrope varies from red to black. A variety of pyrope from Macon County, North Carolina is a shade and has been called rhodolite
5.
Tetrahedral symmetry
–
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4, chiral and full are discrete point symmetries. They are among the point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The intersection of these meet at order 2 and 3 gyration points. T,332, +, or 23, of order 12 – chiral or rotational tetrahedral symmetry, there are three orthogonal 2-fold rotation axes, like chiral dihedral symmetry D2 or 222, with in addition four 3-fold axes, centered between the three orthogonal directions. This group is isomorphic to A4, the group on 4 elements, in fact it is the group of even permutations of the four 3-fold axes. The three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. Td, *332, or 43m, of order 24 – achiral or full tetrahedral symmetry and this group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S4 axes, td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, see also the isometries of the regular tetrahedron. This group has the same axes as T, with mirror planes through two of the orthogonal directions. The 3-fold axes are now S6 axes, and there is an inversion symmetry. Th is isomorphic to T × Z2, every element of Th is either an element of T, apart from these two normal subgroups, there is also a normal subgroup D2h, of type Dih2 × Z2 = Z2 × Z2 × Z2. It is the product of the normal subgroup of T with Ci. The quotient group is the same as above, of type Z3, the three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the permutations of the body diagonals
6.
Rhombicuboctahedron
–
In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is an Archimedean solid with eight triangular and eighteen square faces. There are 24 identical vertices, with one triangle and three meeting at each. The polyhedron has octahedral symmetry, like the cube and octahedron and its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids. Johannes Kepler in Harmonices Mundi named this polyhedron a rhombicuboctahedron, being short for truncated cuboctahedral rhombus and this truncation creates new vertices mid-edge to the rhombic dodecahedron, creating rectangular faces inside the original rhombic faces, and new square and triangle faces at the original vertices. The semiregular form here requires the geometry be adjusted so the rectangles become squares and it can also be called an expanded cube or cantellated cube or a cantellated octahedron from truncation operations of the uniform polyhedron. There are distortions of the rhombicuboctahedron that, while some of the faces are not regular polygons, are still vertex-uniform. Some of these can be made by taking a cube or octahedron and cutting off the edges, then trimming the corners, so the resulting polyhedron has six square and twelve rectangular faces. The lines along which a Rubiks Cube can be turned are, projected onto a sphere, similar, topologically identical, in fact, variants using the Rubiks Cube mechanism have been produced which closely resemble the rhombicuboctahedron. The rhombicuboctahedron is used in three uniform space-filling tessellations, the cubic honeycomb, the runcitruncated cubic honeycomb, and the runcinated alternated cubic honeycomb. The rhombicuboctahedron can be dissected into two square cupolae and an octagonal prism. A rotation of one cupola by 45 degrees creates the pseudorhombicuboctahedron, both of these polyhedra have the same vertex figure,3.4.4.4. There are three pairs of parallel planes that each intersect the rhombicuboctahedron in a regular octagon and these pieces can be reassembled to give a new solid called the elongated square gyrobicupola or pseudorhombicuboctahedron, with the symmetry of a square antiprism. The rhombicuboctahedron has six special orthogonal projections, centered, on a vertex, the last two correspond to the B2 and A2 Coxeter planes. The rhombicuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. A half symmetry form of the rhombicuboctahedron, exists with pyritohedral symmetry, as Coxeter diagram, Schläfli symbol s2 and this form can be visualized by alternatingly coloring the edges of the 6 squares. These squares can then be distorted into rectangles, while the 8 triangles remain equilateral, the 12 diagonal square faces will become isosceles trapezoids. Cartesian coordinates for the vertices of a rhombicuboctahedron centred at the origin, if the original rhombicuboctahedron has unit edge length, its dual strombic icositetrahedron has edge lengths 2710 −2 and 4 −22
7.
Cubic honeycomb
–
The cubic honeycomb or cubic cellulation is the only regular space-filling tessellation in Euclidean 3-space, made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex and its vertex figure is a regular octahedron. It is a tessellation with Schläfli symbol. John Horton Conway calls this honeycomb a cubille, a geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the general mathematical tiling or tessellation in any number of dimensions. Honeycombs are usually constructed in ordinary Euclidean space, like the uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs, any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. The Cartesian coordinates of the vertices are, for all values, i, j, k, with edges parallel to the axes. It is part of a family of hypercube honeycombs, with Schläfli symbols of the form, starting with the square tiling. It is one of 28 uniform honeycombs using convex uniform polyhedral cells, simple cubic lattices can be distorted into lower symmetries, represented by lower crystal systems, There is a large number of uniform colorings, derived from different symmetries. These include, It is related to the regular 4-polytope tesseract, Schläfli symbol, which exists in 4-space and its also related to the order-5 cubic honeycomb, Schläfli symbol, of hyperbolic space with 5 cubes around each edge. It is in a sequence of polychora and honeycomb with octahedral vertex figures and it in a sequence of regular polytopes and honeycombs with cubic cells. The, Coxeter group generates 15 permutations of uniform tessellations,9 with distinct geometry including the cubic honeycomb. The expanded cubic honeycomb is geometrically identical to the cubic honeycomb, the, Coxeter group generates 9 permutations of uniform tessellations,4 with distinct geometry including the alternated cubic honeycomb. This honeycomb is one of five distinct uniform honeycombs constructed by the A ~3 Coxeter group and it is composed of octahedra and cuboctahedra in a ratio of 1,1. John Horton Conway calls this honeycomb a cuboctahedrille, and its dual oblate octahedrille, There are four uniform colorings for the cells of this honeycomb with reflective symmetry, listed by their Coxeter group, and Wythoff construction name, and the Coxeter diagram below. This honeycomb can be divided on trihexagonal tiling planes, using the hexagon centers of the cuboctahedra and this scaliform honeycomb is represented by Coxeter diagram, and symbol s3, with coxeter notation symmetry. The truncated cubic honeycomb or truncated cubic cellulation is a uniform space-filling tessellation in Euclidean 3-space and it is composed of truncated cubes and octahedra in a ratio of 1,1
8.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors
9.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
10.
Cuboctahedron
–
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, as such, it is a quasiregular polyhedron, i. e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. Its dual polyhedron is the rhombic dodecahedron, the cuboctahedron was probably known to Plato, Herons Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name Dymaxion to this shape, used in a version of the Dymaxion map. He also called it the Vector Equilibrium and he called a cuboctahedron consisting of rigid struts connected by flexible vertices a jitterbug. With Oh symmetry, order 48, it is a cube or rectified octahedron With Td symmetry, order 24. With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are, the cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, and the two types of faces, triangular and square. The last two correspond to the B2 and A2 Coxeter planes, the skew projections show a square and hexagon passing through the center of the cuboctahedron. The cuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The cuboctahedrons 12 vertices can represent the vectors of the simple Lie group A3. With the addition of 6 vertices of the octahedron, these represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron, if these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created. The cuboctahedron can also be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point and this dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra. A cuboctahedron can be obtained by taking a cross section of a four-dimensional 16-cell. Its first stellation is the compound of a cube and its dual octahedron, the cuboctahedron is a rectified cube and also a rectified octahedron. It is also a cantellated tetrahedron, with this construction it is given the Wythoff symbol,33 |2
11.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
12.
Truncated tetrahedron
–
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces,4 equilateral triangle faces,12 vertices and 18 edges and it can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length. A deeper truncation, removing a tetrahedron of half the edge length from each vertex, is called rectification. The rectification of a tetrahedron produces an octahedron, a truncated tetrahedron is the Goldberg polyhedron GIII, containing triangular and hexagonal faces. A truncated tetrahedron can be called a cube, with Coxeter diagram. There are two positions of this construction, and combining them creates the uniform compound of two truncated tetrahedra. The area A and the volume V of a tetrahedron of edge length a are. The densest packing of the Archimedean truncated tetrahedron is believed to be Φ = 207/208, in fact, if the truncation of the corners is slightly smaller than that of an Archimedean truncated tetrahedron, this new shape can be used to completely fill space. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. A lower symmetry version of the tetrahedron is called a Friauf polyhedron in crystals such as complex metallic alloys. This form fits 5 Friauf polyhedra around an axis, giving a 72-degree dihedral angle on a subset of 6-6 edges, Friauf and his 1927 paper The crystal structure of the intermetallic compound MgCu2. Giant truncated tetrahedra were used for the Man the Explorer and Man the Producer theme pavilions in Expo 67 and they were made of massive girders of steel bolted together in a geometric lattice. The truncated tetrahedra were interconnected with lattice steel platforms, all of these buildings were demolished after the end of Expo 67, as they had not been built to withstand the severity of the Montreal weather over the years. Their only remnants are in the Montreal city archives, the Public Archives Of Canada, the Tetraminx puzzle has a truncated tetrahedral shape. This puzzle shows a dissection of a tetrahedron into 4 octahedra and 6 tetrahedra. It contains 4 central planes of rotations, in the mathematical field of graph theory, a truncated tetrahedral graph is a Archimedean graph, the graph of vertices and edges of the truncated tetrahedron, one of the Archimedean solids. It has 12 vertices and 18 edges and it is a connected cubic graph, and connected cubic transitive graph. It is also a part of a sequence of cantic polyhedra, in this wythoff construction the edges between the hexagons represent degenerate digons