1.
Regular dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does
2.
Small stellated dodecahedron
–
In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 pentagrammic faces, with five meeting at each vertex. It shares the vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron and it is the second of four stellations of the dodecahedron. It is central to two lithographs by M. C and its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron, compound of small stellated dodecahedron and great dodecahedron Small stellated dodecahedron programing Wenninger, Magnus. Weber, Matthias, Keplers small stellated dodecahedron as a Riemann surface,220, 167–182 Eric W. Weisstein, Small stellated dodecahedron at MathWorld
3.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
4.
Pyrite
–
The mineral pyrite, or iron pyrite, also known as fools gold, is an iron sulfide with the chemical formula FeS2. This minerals metallic luster and pale brass-yellow hue give it a resemblance to gold. The color has led to the nicknames brass, brazzle. Pyrite is the most common of the sulfide minerals, the name pyrite is derived from the Greek πυρίτης, of fire or in fire, in turn from πύρ, fire. 1550, the term had become a term for all of the sulfide minerals. Pyrite is usually associated with other sulfides or oxides in quartz veins, sedimentary rock. Despite being nicknamed fools gold, pyrite is sometimes found in association with small quantities of gold, Gold and arsenic occur as a coupled substitution in the pyrite structure. In the Carlin–type gold deposits, arsenian pyrite contains up to 0.37 wt% gold, Pyrite has been used since classical times to manufacture copperas, that is, iron sulfate. Iron pyrite was heaped up and allowed to weather, the acidic runoff from the heap was then boiled with iron to produce iron sulfate. In the 15th century, such leaching began to replace the burning of sulfur as a source of sulfuric acid, by the 19th century, it had become the dominant method. Pyrite remains in use for the production of sulfur dioxide, for use in such applications as the paper industry. Thermal decomposition of pyrite into FeS and elemental sulfur starts at 540 °C, a newer commercial use for pyrite is as the cathode material in Energizer brand non-rechargeable lithium batteries. Pyrite is a material with a band gap of 0.95 eV. During the early years of the 20th century, pyrite was used as a detector in radio receivers. Pyrite detectors occupied a midway point between galena detectors and the more mechanically complicated perikon mineral pairs, Pyrite detectors can be as sensitive as a modern 1N34A germanium diode detector. Pyrite has been proposed as an abundant, inexpensive material in low-cost photovoltaic solar panels, synthetic iron sulfide was used with copper sulfide to create the photovoltaic material. Pyrite is used to make marcasite jewelry, marcasite jewelry, made from small faceted pieces of pyrite, often set in silver, was known since ancient times and was popular in the Victorian era. Marcasite jewelry does not actually contain the mineral marcasite, from the perspective of classical inorganic chemistry, which assigns formal oxidation states to each atom, pyrite is probably best described as Fe2+S22−
5.
Tetrahedral symmetry
–
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4, chiral and full are discrete point symmetries. They are among the point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The intersection of these meet at order 2 and 3 gyration points. T,332, +, or 23, of order 12 – chiral or rotational tetrahedral symmetry, there are three orthogonal 2-fold rotation axes, like chiral dihedral symmetry D2 or 222, with in addition four 3-fold axes, centered between the three orthogonal directions. This group is isomorphic to A4, the group on 4 elements, in fact it is the group of even permutations of the four 3-fold axes. The three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. Td, *332, or 43m, of order 24 – achiral or full tetrahedral symmetry and this group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S4 axes, td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, see also the isometries of the regular tetrahedron. This group has the same axes as T, with mirror planes through two of the orthogonal directions. The 3-fold axes are now S6 axes, and there is an inversion symmetry. Th is isomorphic to T × Z2, every element of Th is either an element of T, apart from these two normal subgroups, there is also a normal subgroup D2h, of type Dih2 × Z2 = Z2 × Z2 × Z2. It is the product of the normal subgroup of T with Ci. The quotient group is the same as above, of type Z3, the three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the permutations of the body diagonals
6.
Octahedral symmetry
–
A regular octahedron has 24 rotational symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has the set of symmetries, since it is the dual of an octahedron. Chiral and full octahedral symmetry are the point symmetries with the largest symmetry groups compatible with translational symmetry. They are among the point groups of the cubic crystal system. But as it is also the direct product S4 × S2, one can identify the elements of S4 as a ∈ [0,4. ). So e. g. the identity is represented as 0, the pairs can be seen in the six files below. Each file is denoted by the m ∈, and the position of each permutation in the file corresponds to the n ∈. A rotoreflection is a combination of rotation and reflection,7 ′ ∘4 =19 ′,7 ′ ∘22 =17 ′, The reflection 7 ′ applied on the 90° rotation 22 gives the 90° rotoreflection 17 ′. O,432, or + of order 24, is chiral octahedral symmetry or rotational octahedral symmetry. This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, Td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, O is the rotation group of the cube and the regular octahedron. Oh, *432, or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry and this group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4. C4, and is the symmetry group of the cube. It is the group for n =3. See also the isometries of the cube, with the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z =1. Ax + by + cz =1 gives a polyhedron with 48 faces, faces are 8-by-8 combined to larger faces for a = b =0 and 6-by-6 for a = b = c. The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6, representing in two orthogonal subsymmetries, D2h, and Td, D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations
7.
Pentagram
–
A pentagram is the shape of a five-pointed star drawn with five straight strokes. The word pentagram comes from the Greek word πεντάγραμμον, from πέντε, five + γραμμή, the word pentacle is sometimes used synonymously with pentagram The word pentalpha is a learned modern revival of a post-classical Greek name of the shape. The pentagram is the simplest regular star polygon, the pentagram contains ten points and fifteen line segments. It is represented by the Schläfli symbol, like a regular pentagon, and a regular pentagon with a pentagram constructed inside it, the regular pentagram has as its symmetry group the dihedral group of order 10. The pentagram can be constructed by connecting alternate vertices of a pentagon and it can also be constructed as a stellation of a pentagon, by extending the edges of a pentagon until the lines intersect. Each intersection of edges sections the edges in the golden ratio, also, the ratio of the length of the shorter segment to the segment bounded by the two intersecting edges is φ. As the four-color illustration shows, r e d g r e e n = g r e e n b l u e = b l u e m a g e n t a = φ. The pentagram includes ten isosceles triangles, five acute and five obtuse isosceles triangles, in all of them, the ratio of the longer side to the shorter side is φ. The acute triangles are golden triangles, the obtuse isosceles triangle highlighted via the colored lines in the illustration is a golden gnomon. The pentagram of Venus is the apparent path of the planet Venus as observed from Earth, the tips of the five loops at the center of the figure have the same geometric relationship to one another as the five vertices, or points, of a pentagram. Groups of five intersections of curves, equidistant from the center, have the same geometric relationship. In early monumental Sumerian script, or cuneiform, a pentagram glyph served as a logogram for the word ub, meaning corner, angle, nook, the word Pentemychos was the title of the cosmogony of Pherecydes of Syros. Here, the five corners are where the seeds of Chronos are placed within the Earth in order for the cosmos to appear. The pentangle plays an important symbolic role in the 14th-century English poem Sir Gawain, heinrich Cornelius Agrippa and others perpetuated the popularity of the pentagram as a magic symbol, attributing the five neoplatonic elements to the five points, in typical Renaissance fashion. By the mid-19th century a distinction had developed amongst occultists regarding the pentagrams orientation. With a single point upwards it depicted spirit presiding over the four elements of matter, however, the influential writer Eliphas Levi called it evil whenever the symbol appeared the other way up. It is the goat of lust attacking the heavens with its horns and it is the sign of antagonism and fatality. It is the goat of lust attacking the heavens with its horns, faust, The pentagram thy peace doth mar
8.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2
9.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
10.
Cubic crystal system
–
In crystallography, the cubic crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals, there are three main varieties of these crystals, Primitive cubic Body-centered cubic, Face-centered cubic Each is subdivided into other variants listed below. Note that although the cell in these crystals is conventionally taken to be a cube. This is related to the fact that in most cubic crystal systems, a classic isometric crystal has square or pentagonal faces. The three Bravais lattices in the crystal system are, The primitive cubic system consists of one lattice point on each corner of the cube. Each atom at a point is then shared equally between eight adjacent cubes, and the unit cell therefore contains in total one atom. The body-centered cubic system has one point in the center of the unit cell in addition to the eight corner points. It has a net total of 2 lattice points per unit cell, Each sphere in a cF lattice has coordination number 12. The face-centered cubic system is related to the hexagonal close packed system. The plane of a cubic system is a hexagonal grid. Attempting to create a C-centered cubic crystal system would result in a simple tetragonal Bravais lattice, there are a total 36 cubic space groups. Other terms for hexoctahedral are, normal class, holohedral, ditesseral central class, a simple cubic unit cell has a single cubic void in the center. Additionally, there are 24 tetrahedral voids located in a square spacing around each octahedral void and these tetrahedral voids are not local maxima and are not technically voids, but they do occasionally appear in multi-atom unit cells. A face-centered cubic unit cell has eight tetrahedral voids located midway between each corner and the center of the cell, for a total of eight net tetrahedral voids. One important characteristic of a structure is its atomic packing factor. This is calculated by assuming all the atoms are identical spheres. The atomic packing factor is the proportion of space filled by these spheres, assuming one atom per lattice point, in a primitive cubic lattice with cube side length a, the sphere radius would be a⁄2 and the atomic packing factor turns out to be about 0.524. Similarly, in a bcc lattice, the atomic packing factor is 0.680, as a rule, since atoms in a solid attract each other, the more tightly packed arrangements of atoms tend to be more common
11.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
12.
Great stellated dodecahedron
–
In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three meeting at each vertex. It shares its vertex arrangement with the regular dodecahedron, as well as being a stellation of a dodecahedron and it is the only dodecahedral stellation with this property, apart from the dodecahedron itself. Its dual, the icosahedron, is related in a similar fashion to the icosahedron. Shaving the triangular pyramids off results in an icosahedron, if the pentagrammic faces are broken into triangles, it is topologically related to the triakis icosahedron, with the same face connectivity, but much taller isosceles triangle faces. A truncation process applied to the great stellated dodecahedron produces a series of uniform polyhedra, truncating edges down to points produces the great icosidodecahedron as a rectified great stellated dodecahedron. The process completes as a birectification, reducing the original faces down to points, eric W. Weisstein, Great stellated dodecahedron at MathWorld