The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects is easily visible to the eye.
Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation.
Solar water heating system based on evacuated glass tube collectors. Sunlight is absorbed inside each tube by a selective surface. The surface absorbs sunlight nearly completely, but has a low thermal emissivity so that it loses very little heat. Ordinary black surfaces also absorb sunlight efficiently, but they emit thermal radiation copiously.
Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. Thermal radiation transmits as an electromagnetic wave through both matter and vacuum. When matter absorbs thermal radiation its temperature will tend to rise. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.
Thermal radiation in visible light can be seen on this hot metalwork. Its emission in the infrared is invisible to the human eye. Infrared cameras are capable of capturing this infrared emission (see Thermography).
Radiant heat panel for testing precisely quantified energy exposures at National Research Council, near Ottawa, Ontario, Canada
Image: Human Infrared
Image: Human Visible