1.
Regular icosahedron
–
In geometry, a regular icosahedron is a convex polyhedron with 20 faces,30 edges and 12 vertices. It is one of the five Platonic solids, and also the one with the most sides and it has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol, or sometimes by its vertex figure as 3.3.3.3.3 or 35 and it is the dual of the dodecahedron, which is represented by, having three pentagonal faces around each vertex. A regular icosahedron is a pentagonal bipyramid and a biaugmented pentagonal antiprism in any of six orientations. The name comes from Greek εἴκοσι, meaning twenty, and ἕδρα, the plural can be either icosahedrons or icosahedra. The surface area A and the volume V of a regular icosahedron of edge length a are, note that these vertices form five sets of three concentric, mutually orthogonal golden rectangles, whose edges form Borromean rings. If the original icosahedron has edge length 1, its dual dodecahedron has edge length √5 − 1/2 = 1/ϕ = ϕ −1, the 12 edges of a regular octahedron can be subdivided in the golden ratio so that the resulting vertices define a regular icosahedron. The locations of the vertices of a regular icosahedron can be described using spherical coordinates, if two vertices are taken to be at the north and south poles, then the other ten vertices are at latitude ±arctan ≈ ±26. 57°. These ten vertices are at evenly spaced longitudes, alternating between north and south latitudes and this projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane, an icosahedron has 43,380 distinct nets. To color the icosahedron, such that no two adjacent faces have the color, requires at least 3 colors. A problem dating back to the ancient Greeks is to determine which of two shapes has larger volume, an icosahedron inscribed in a sphere, or a dodecahedron inscribed in the same sphere, the problem was solved by Hero, Pappus, and Fibonacci, among others. Apollonius of Perga discovered the result that the ratio of volumes of these two shapes is the same as the ratio of their surface areas. Both volumes have formulas involving the golden ratio, but taken to different powers, as it turns out, the icosahedron occupies less of the spheres volume than the dodecahedron. The following construction of the icosahedron avoids tedious computations in the number field ℚ necessary in more elementary approaches, the existence of the icosahedron amounts to the existence of six equiangular lines in ℝ3. Indeed, intersecting such a system of lines with a Euclidean sphere centered at their common intersection yields the twelve vertices of a regular icosahedron as can easily be checked. Conversely, supposing the existence of an icosahedron, lines defined by its six pairs of opposite vertices form an equiangular system. In order to such an equiangular system, we start with this 6 ×6 square matrix
2.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
3.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does
4.
Pentagram
–
A pentagram is the shape of a five-pointed star drawn with five straight strokes. The word pentagram comes from the Greek word πεντάγραμμον, from πέντε, five + γραμμή, the word pentacle is sometimes used synonymously with pentagram The word pentalpha is a learned modern revival of a post-classical Greek name of the shape. The pentagram is the simplest regular star polygon, the pentagram contains ten points and fifteen line segments. It is represented by the Schläfli symbol, like a regular pentagon, and a regular pentagon with a pentagram constructed inside it, the regular pentagram has as its symmetry group the dihedral group of order 10. The pentagram can be constructed by connecting alternate vertices of a pentagon and it can also be constructed as a stellation of a pentagon, by extending the edges of a pentagon until the lines intersect. Each intersection of edges sections the edges in the golden ratio, also, the ratio of the length of the shorter segment to the segment bounded by the two intersecting edges is φ. As the four-color illustration shows, r e d g r e e n = g r e e n b l u e = b l u e m a g e n t a = φ. The pentagram includes ten isosceles triangles, five acute and five obtuse isosceles triangles, in all of them, the ratio of the longer side to the shorter side is φ. The acute triangles are golden triangles, the obtuse isosceles triangle highlighted via the colored lines in the illustration is a golden gnomon. The pentagram of Venus is the apparent path of the planet Venus as observed from Earth, the tips of the five loops at the center of the figure have the same geometric relationship to one another as the five vertices, or points, of a pentagram. Groups of five intersections of curves, equidistant from the center, have the same geometric relationship. In early monumental Sumerian script, or cuneiform, a pentagram glyph served as a logogram for the word ub, meaning corner, angle, nook, the word Pentemychos was the title of the cosmogony of Pherecydes of Syros. Here, the five corners are where the seeds of Chronos are placed within the Earth in order for the cosmos to appear. The pentangle plays an important symbolic role in the 14th-century English poem Sir Gawain, heinrich Cornelius Agrippa and others perpetuated the popularity of the pentagram as a magic symbol, attributing the five neoplatonic elements to the five points, in typical Renaissance fashion. By the mid-19th century a distinction had developed amongst occultists regarding the pentagrams orientation. With a single point upwards it depicted spirit presiding over the four elements of matter, however, the influential writer Eliphas Levi called it evil whenever the symbol appeared the other way up. It is the goat of lust attacking the heavens with its horns and it is the sign of antagonism and fatality. It is the goat of lust attacking the heavens with its horns, faust, The pentagram thy peace doth mar
5.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
6.
Final stellation of the icosahedron
–
This polyhedron is the seventeenth stellation of the icosahedron, and given as Wenninger model index 42. As a geometrical figure, it has two interpretations, described below, As an irregular polyhedron with 20 identical self-intersecting enneagrammic faces,90 edges,60 vertices. As a simple polyhedron with 180 triangular faces,270 edges and this interpretation is useful for polyhedron model building. Johannes Kepler researched stellations that create regular star polyhedra in 1619,1619, In Harmonices Mundi, Johannes Kepler first applied the stellation process, recognizing the small stellated dodecahedron and great stellated dodecahedron as regular polyhedra. 1809, Louis Poinsot rediscovered Keplers polyhedra and two more, the icosahedron and great dodecahedron as regular star polyhedra, now called the Kepler–Poinsot polyhedra. 1812, Augustin-Louis Cauchy made a further enumeration of star polyhedra,1900, Max Brückner extended the stellation theory beyond regular forms, and identified ten stellations of the icosahedron, including the complete stellation. 1924, A. H. Wheeler in 1924 published a list of 20 stellation forms,1938, In their 1938 book The Fifty Nine Icosahedra, H. S. M. Coxeter, P. Du Val, H. T. Flather and J. F. Petrie stated a set of rules for the regular icosahedron. The complete stellation is referenced as the eighth in the book,1974, In Wenningers 1974 book Polyhedron Models, the final stellation of the icosahedron is included as the 17th model of stellated icosahedra with index number W42. 1995, Andrew Hume named it in his Netlib polyhedral database as the echidnahedron, the Fifty Nine Icosahedra enumerates the stellations of the regular icosahedron, according to a set of rules put forward by J. C. P. Miller, including the complete stellation. The Du Val symbol of the stellation is H, because it includes all cells in the stellation diagram up to. As a simple, visible surface polyhedron, the form of the final stellation is composed of 180 triangular faces. These join along 270 edges, which in turn meet at 92 vertices, the 92 vertices lie on the surfaces of three concentric spheres. The radii of spheres are in the ratio 32,12,12. When regarded as a solid object with edge lengths a, φa, φ2a and φ2a√2 the complete icosahedron has surface area S =120 a 2. The complete stellation can also be seen as a star polyhedron having 20 faces corresponding to the 20 faces of the underlying icosahedron. Each face is an irregular 9/4 star polygon, or enneagram, since three faces meet at each vertex it has 20 ×9 /3 =60 vertices and 20 ×9 /2 =90 edges. When regarded as an icosahedron, the complete stellation is a noble polyhedron
7.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
8.
Great icosahedron
–
In geometry, the great icosahedron is one of four Kepler-Poinsot polyhedra, with Schläfli symbol and Coxeter-Dynkin diagram of. It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence, the great icosahedron can be constructed a uniform snub, with different colored faces and only tetrahedral symmetry. This construction can be called a tetrahedron or retrosnub tetratetrahedron, similar to the snub tetrahedron symmetry of the icosahedron. It can also be constructed with 2 colors of triangles and pyritohedral symmetry as, or and it shares the same vertex arrangement as the regular convex icosahedron. It also shares the same arrangement as the small stellated dodecahedron. A truncation operation, repeatedly applied to the icosahedron, produces a sequence of uniform polyhedra. Truncating edges down to points produces the great icosidodecahedron as a great icosahedron. The process completes as a birectification, reducing the original faces down to points, coxeter, Harold Scott MacDonald, Du Val, P. Flather, H. T. Petrie, J. F. Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8,3.66.2 Stellating the Platonic solids, pp. 96-104 Eric W. Weisstein, Great icosahedron at MathWorld
9.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged