Hallucinogen
A hallucinogen is a psychoactive agent which can cause hallucinations, perceptual anomalies, other substantial subjective changes in thoughts and consciousness. The common types of hallucinogens are psychedelics and deliriants. Although hallucinations are a common symptom of amphetamine psychosis, amphetamines are not considered hallucinogens, as they are not a primary effect of the drugs themselves. While hallucinations can occur when abusing stimulants, the nature of stimulant psychosis is not unlike delirium. A debate persists on criteria which would differentiate a substance which is'psychedelic' from one'hallucinogenic'. Sir Thomas Browne in 1646 coined the term'hallucination' from the Latin word "alucinari" meaning "to wander in the mind"; the term'psychedelic' is derived from the Ancient Greek words psychē and dēloun, or "mind-revealing".'A hallucinogen' and'a psychedelic' may refer to the same substance.'Hallucinations' and'psychedelia' may both refer to the same aspects of subjective experience in a given instance.
The term psychedelia carries an added reference to psychedelic substance culture, and'psychedelics' are considered by many to be the'traditional' or'classical hallucinogens' including DMT, Psilocybin, LSD.'A hallucinogen' in this sense broadly refers to any substance which causes changes in perception or hallucinations, while psychedelics carry a positive connotation of general perceptual enhancement. In contrast to Hollister's original criteria, adverse effects may predominate with some hallucinogens with this application of the term; the word psychedelic was coined to express the idea of a drug that makes manifest a hidden but real aspect of the mind. It is applied to any drug with perception-altering effects such as LSD and other ergotamine derivatives, DMT and other tryptamines including the alkaloids of Psilocybe spp. mescaline and other phenethylamines. The term "psychedelic" is applied somewhat interchangeably with "psychotomimetic" and "hallucinogen", The classical hallucinogens are considered to be the representative psychedelics and LSD is considered the prototypical psychedelic.
In order to refer to the LSD-like psychedelics, scientific authors have used the term "classical hallucinogen" in the sense defined by Glennon: "The classical hallucinogens are agents that meet Hollister's original definition, but are agents that: bind at 5-HT2 serotonin receptors, are recognized by animals trained to discriminate 1--2-aminopropane from vehicle. Otherwise, when the term "psychedelic" is used to refer only to the LSD-like psychedelics, authors explicitly point that they intend "psychedelic" to be understood according to this more restrictive interpretation. One explanatory model for the experiences provoked by psychedelics is the "reducing valve" concept, first articulated in Aldous Huxley's book The Doors of Perception. In this view, the drugs disable the brain's "filtering" ability to selectively prevent certain perceptions, emotions and thoughts from reaching the conscious mind; this effect has been described as mind expanding, or consciousness expanding, for the drug "expands" the realm of experience available to conscious awareness.
While possessing a unique mechanism of action, cannabis or marijuana has been regarded alongside the classic psychedelics. A designer drug is a structural or functional analog of a controlled substance, designed to mimic the pharmacological effects of the original drug while at the same time avoid being classified as illegal and/or avoid detection in standard drug tests. Many designer drugs and research chemicals are hallucinogenic in nature, such as those in the 2C and 25-NB families. Dissociatives produce analgesia and catalepsy at anesthetic doses, they produce a sense of detachment from the surrounding environment, hence "the state has been designated as dissociative anesthesia since the patient seems disassociated from his environment." Dissociative symptoms include the disruption or compartmentalization of "...the integrated functions of consciousness, identity or perception."p. 523 Dissociation of sensory input can cause derealization, the perception of the outside world as being dream-like or unreal.
Other dissociative experiences include depersonalization, which includes feeling detached from one's body. Simeon offered "...common descriptions of depersonalisation experiences: watching oneself from a distance. However, dissociation is remarkably administered by salvinorin A's potent κ-opioid receptor agonism, though sometimes described as an atypical psychedelic; some dissociatives can have CNS depressant effects, thereby carrying similar risks as opioids, which can slow breathing or heart rate to levels resulting in death (w
Solubility
Solubility is the property of a solid, liquid or gaseous chemical substance called solute to dissolve in a solid, liquid or gaseous solvent. The solubility of a substance fundamentally depends on the physical and chemical properties of the solute and solvent as well as on temperature and presence of other chemicals of the solution; the extent of the solubility of a substance in a specific solvent is measured as the saturation concentration, where adding more solute does not increase the concentration of the solution and begins to precipitate the excess amount of solute. Insolubility is the inability to dissolve in a liquid or gaseous solvent. Most the solvent is a liquid, which can be a pure substance or a mixture. One may speak of solid solution, but of solution in a gas. Under certain conditions, the equilibrium solubility can be exceeded to give a so-called supersaturated solution, metastable. Metastability of crystals can lead to apparent differences in the amount of a chemical that dissolves depending on its crystalline form or particle size.
A supersaturated solution crystallises when'seed' crystals are introduced and rapid equilibration occurs. Phenylsalicylate is one such simple observable substance when melted and cooled below its fusion point. Solubility is not to be confused with the ability to'dissolve' a substance, because the solution might occur because of a chemical reaction. For example, zinc'dissolves' in hydrochloric acid as a result of a chemical reaction releasing hydrogen gas in a displacement reaction; the zinc ions are soluble in the acid. The solubility of a substance is an different property from the rate of solution, how fast it dissolves; the smaller a particle is, the faster it dissolves although there are many factors to add to this generalization. Crucially solubility applies to all areas of chemistry, inorganic, physical and biochemistry. In all cases it will depend on the physical conditions and the enthalpy and entropy directly relating to the solvents and solutes concerned. By far the most common solvent in chemistry is water, a solvent for most ionic compounds as well as a wide range of organic substances.
This is a crucial factor in much environmental and geochemical work. According to the IUPAC definition, solubility is the analytical composition of a saturated solution expressed as a proportion of a designated solute in a designated solvent. Solubility may be stated in various units of concentration such as molarity, mole fraction, mole ratio, mass per volume and other units; the extent of solubility ranges from infinitely soluble such as ethanol in water, to poorly soluble, such as silver chloride in water. The term insoluble is applied to poorly or poorly soluble compounds. A number of other descriptive terms are used to qualify the extent of solubility for a given application. For example, U. S. Pharmacopoeia gives the following terms: The thresholds to describe something as insoluble, or similar terms, may depend on the application. For example, one source states that substances are described as "insoluble" when their solubility is less than 0.1 g per 100 mL of solvent. Solubility occurs under dynamic equilibrium, which means that solubility results from the simultaneous and opposing processes of dissolution and phase joining.
The solubility equilibrium occurs. The term solubility is used in some fields where the solute is altered by solvolysis. For example, many metals and their oxides are said to be "soluble in hydrochloric acid", although in fact the aqueous acid irreversibly degrades the solid to give soluble products, it is true that most ionic solids are dissolved by polar solvents, but such processes are reversible. In those cases where the solute is not recovered upon evaporation of the solvent, the process is referred to as solvolysis; the thermodynamic concept of solubility does not apply straightforwardly to solvolysis. When a solute dissolves, it may form several species in the solution. For example, an aqueous suspension of ferrous hydroxide, Fe2, will contain the series + as well as other species. Furthermore, the solubility of ferrous hydroxide and the composition of its soluble components depend on pH. In general, solubility in the solvent phase can be given only for a specific solute, thermodynamically stable, the value of the solubility will include all the species in the solution.
Solubility is defined for specific phases. For example, the solubility of aragonite and calcite in water are expected to differ though they are both polymorphs of calcium carbonate and have the same chemical formula; the solubility of one substance in another is determined by the balance of intermolecular forces between the solvent and solute, the entropy change that accompanies the solvation. Factors such as temperature and pressure will alter this balance. Solubility may strongly depend on the presence of other species dissolved in the solvent, for example, complex-forming anions in liquids. Solubility will depend on the excess or deficiency of a common ion in the solution, a phenomenon known as the common-ion effect. To a lesser extent, solubility will depend on the ionic strength of solutions; the last two effects can be quantified using the equation for solubility equilibrium. For a solid that dissolves in a redox reaction, solubility is expe
Melting point
The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium; the melting point of a substance depends on pressure and is specified at a standard pressure such as 1 atmosphere or 100 kPa. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point; because of the ability of some substances to supercool, the freezing point is not considered as a characteristic property of a substance. When the "characteristic freezing point" of a substance is determined, in fact the actual methodology is always "the principle of observing the disappearance rather than the formation of ice", that is, the melting point. For most substances and freezing points are equal. For example, the melting point and freezing point of mercury is 234.32 kelvins. However, certain substances possess differing solid-liquid transition temperatures.
For example, agar melts at 85 °C and solidifies from 31 °C. The melting point of ice at 1 atmosphere of pressure is close to 0 °C. In the presence of nucleating substances, the freezing point of water is not always the same as the melting point. In the absence of nucleators water can exist as a supercooled liquid down to −48.3 °C before freezing. The chemical element with the highest melting point is tungsten, at 3,414 °C; the often-cited carbon does not melt at ambient pressure but sublimes at about 3,726.85 °C. Tantalum hafnium carbide is a refractory compound with a high melting point of 4215 K. At the other end of the scale, helium does not freeze at all at normal pressure at temperatures arbitrarily close to absolute zero. Many laboratory techniques exist for the determination of melting points. A Kofler bench is a metal strip with a temperature gradient. Any substance can be placed on a section of the strip, revealing its thermal behaviour at the temperature at that point. Differential scanning calorimetry gives information on melting point together with its enthalpy of fusion.
A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window and a simple magnifier. The several grains of a solid are placed in a thin glass tube and immersed in the oil bath; the oil bath is heated and with the aid of the magnifier melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, optical detection is automated; the measurement can be made continuously with an operating process. For instance, oil refineries measure the freeze point of diesel fuel online, meaning that the sample is taken from the process and measured automatically; this allows for more frequent measurements as the sample does not have to be manually collected and taken to a remote laboratory. For refractory materials the high melting point may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials, this may require extrapolation by several hundred degrees.
The spectral radiance from an incandescent body is known to be a function of its temperature. An optical pyrometer matches the radiance of a body under study to the radiance of a source, calibrated as a function of temperature. In this way, the measurement of the absolute magnitude of the intensity of radiation is unnecessary. However, known temperatures must be used to determine the calibration of the pyrometer. For temperatures above the calibration range of the source, an extrapolation technique must be employed; this extrapolation is accomplished by using Planck's law of radiation. The constants in this equation are not known with sufficient accuracy, causing errors in the extrapolation to become larger at higher temperatures. However, standard techniques have been developed to perform this extrapolation. Consider the case of using gold as the source. In this technique, the current through the filament of the pyrometer is adjusted until the light intensity of the filament matches that of a black-body at the melting point of gold.
This establishes the primary calibration temperature and can be expressed in terms of current through the pyrometer lamp. With the same current setting, the pyrometer is sighted on another black-body at a higher temperature. An absorbing medium of known transmission is inserted between this black-body; the temperature of the black-body is adjusted until a match exists between its intensity and that of the pyrometer filament. The true higher temperature of the black-body is determined from Planck's Law; the absorbing medium is removed and the current through the filament is adjusted to match the filament intensity to that of the black-body. This establishes a second calibration point for the pyrometer; this step is repeated to carry the calibration to hi
Neurotransmitter
Neurotransmitters are endogenous chemicals that enable neurotransmission. It is a type of chemical messenger which transmits signals across a chemical synapse, such as a neuromuscular junction, from one neuron to another "target" neuron, muscle cell, or gland cell. Neurotransmitters are released from synaptic vesicles in synapses into the synaptic cleft, where they are received by neurotransmitter receptors on the target cells. Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids, which are available from the diet and only require a small number of biosynthetic steps for conversion. Neurotransmitters play a major role in shaping everyday life and functions, their exact numbers are unknown, but more than 200 chemical messengers have been uniquely identified. Neurotransmitters are stored in synaptic vesicles, clustered close to the cell membrane at the axon terminal of the presynaptic neuron. Neurotransmitters are released into and diffuse across the synaptic cleft, where they bind to specific receptors on the membrane of the postsynaptic neuron.
Most neurotransmitters are about the size of a single amino acid. A released neurotransmitter is available in the synaptic cleft for a short time before it is metabolized by enzymes, pulled back into the presynaptic neuron through reuptake, or bound to a postsynaptic receptor. Short-term exposure of the receptor to a neurotransmitter is sufficient for causing a postsynaptic response by way of synaptic transmission. In response to a threshold action potential or graded electrical potential, a neurotransmitter is released at the presynaptic terminal. Low level "baseline" release occurs without electrical stimulation; the released neurotransmitter may move across the synapse to be detected by and bind with receptors in the postsynaptic neuron. Binding of neurotransmitters may influence the postsynaptic neuron in either an inhibitory or excitatory way; this neuron may be connected to many more neurons, if the total of excitatory influences are greater than those of inhibitory influences, the neuron will "fire".
It will create a new action potential at its axon hillock to release neurotransmitters and pass on the information to yet another neighboring neuron. Until the early 20th century, scientists assumed that the majority of synaptic communication in the brain was electrical. However, through the careful histological examinations by Ramón y Cajal, a 20 to 40 nm gap between neurons, known today as the synaptic cleft, was discovered; the presence of such a gap suggested communication via chemical messengers traversing the synaptic cleft, in 1921 German pharmacologist Otto Loewi confirmed that neurons can communicate by releasing chemicals. Through a series of experiments involving the vagus nerves of frogs, Loewi was able to manually slow the heart rate of frogs by controlling the amount of saline solution present around the vagus nerve. Upon completion of this experiment, Loewi asserted that sympathetic regulation of cardiac function can be mediated through changes in chemical concentrations. Furthermore, Otto Loewi is credited with discovering acetylcholine —the first known neurotransmitter.
Some neurons do, communicate via electrical synapses through the use of gap junctions, which allow specific ions to pass directly from one cell to another. There are four main criteria for identifying neurotransmitters: The chemical must be synthesized in the neuron or otherwise be present in it; when the neuron is active, the chemical must produce a response in some target. The same response must be obtained. A mechanism must exist for removing the chemical from its site of activation. However, given advances in pharmacology and chemical neuroanatomy, the term "neurotransmitter" can be applied to chemicals that: Carry messages between neurons via influence on the postsynaptic membrane. Have little or no effect on membrane voltage, but have a common carrying function such as changing the structure of the synapse. Communicate by sending reverse-direction messages that affect the release or reuptake of transmitters; the anatomical localization of neurotransmitters is determined using immunocytochemical techniques, which identify the location of either the transmitter substances themselves, or of the enzymes that are involved in their synthesis.
Immunocytochemical techniques have revealed that many transmitters the neuropeptides, are co-localized, that is, one neuron may release more than one transmitter from its synaptic terminal. Various techniques and experiments such as staining and collecting can be used to identify neurotransmitters throughout the central nervous system. There are many different ways. Dividing them into amino acids and monoamines is sufficient for some classification purposes. Major neurotransmitters: Amino acids: glutamate, aspartate, D-serine, γ-aminobutyric acid, glycine Gasotransmitters: nitric oxide, carbon monoxide, hydrogen sulfide Monoamines: dopamine, epinephrine, serotonin Trace amines: phenethylamine, N-methylphenethylamine, tyramine, 3-iodothyronamine, tryptamine, etc. Peptides: oxytocin, substance P, cocaine and amphetamine regulated transcript, opioid peptides Purines: adenosine triphosphate, adenosine Catecholamines: dopamine, epinephrine Others: acetylcholine, etc. In addition, over 50 neuroactive pepti
Muscazone
Muscazone is a toxic chemical compound. It is an amino acid found in European fly agaric mushrooms. Consumption causes visual damage, mental confusion, memory loss. Ibotenic acid Muscimol
Simplified molecular-input line-entry system
The simplified molecular-input line-entry system is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules; the original SMILES specification was initiated in the 1980s. It has since been extended. In 2007, an open standard called. Other linear notations include the Wiswesser line notation, ROSDAL, SYBYL Line Notation; the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. Acknowledged for their parts in the early development were "Gilman Veith and Rose Russo and Albert Leo and Corwin Hansch for supporting the work, Arthur Weininger and Jeremy Scofield for assistance in programming the system." The Environmental Protection Agency funded the initial project to develop SMILES. It has since been modified and extended by others, most notably by Daylight Chemical Information Systems.
In 2007, an open standard called "OpenSMILES" was developed by the Blue Obelisk open-source chemistry community. Other'linear' notations include the Wiswesser Line Notation, ROSDAL and SLN. In July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is considered to have the advantage of being more human-readable than InChI; the term SMILES refers to a line notation for encoding molecular structures and specific instances should be called SMILES strings. However, the term SMILES is commonly used to refer to both a single SMILES string and a number of SMILES strings; the terms "canonical" and "isomeric" can lead to some confusion when applied to SMILES. The terms are not mutually exclusive. A number of valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol. Algorithms have been developed to generate the same SMILES string for a given molecule; this SMILES is unique for each structure, although dependent on the canonicalization algorithm used to generate it, is termed the canonical SMILES.
These algorithms first convert the SMILES to an internal representation of the molecular structure. Various algorithms for generating canonical SMILES have been developed and include those by Daylight Chemical Information Systems, OpenEye Scientific Software, MEDIT, Chemical Computing Group, MolSoft LLC, the Chemistry Development Kit. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database; the original paper that described the CANGEN algorithm claimed to generate unique SMILES strings for graphs representing molecules, but the algorithm fails for a number of simple cases and cannot be considered a correct method for representing a graph canonically. There is no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, double bond geometry; these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES.
A notable feature of these rules is. The term isomeric SMILES is applied to SMILES in which isotopes are specified. In terms of a graph-based computational procedure, SMILES is a string obtained by printing the symbol nodes encountered in a depth-first tree traversal of a chemical graph; the chemical graph is first trimmed to remove hydrogen atoms and cycles are broken to turn it into a spanning tree. Where cycles have been broken, numeric suffix labels are included to indicate the connected nodes. Parentheses are used to indicate points of branching on the tree; the resultant SMILES form depends on the choices: of the bonds chosen to break cycles, of the starting atom used for the depth-first traversal, of the order in which branches are listed when encountered. Atoms are represented by the standard abbreviation of the chemical elements, in square brackets, such as for gold. Brackets may be omitted in the common case of atoms which: are in the "organic subset" of B, C, N, O, P, S, F, Cl, Br, or I, have no formal charge, have the number of hydrogens attached implied by the SMILES valence model, are the normal isotopes, are not chiral centers.
All other elements must be enclosed in brackets, have charges and hydrogens shown explicitly. For instance, the SMILES for water may be written as either O or. Hydrogen may be written as a separate atom; when brackets are used, the symbol H is added if the atom in brackets is bonded to one or more hydrogen, followed by the number of hydrogen atoms if greater than 1 by the sign + for a positive charge or by - for a negative charge. For example, for ammonium. If there is more than one charge, it is written as digit.
Benzodiazepine
Benzodiazepines, sometimes called "benzos", are a class of psychoactive drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. The first such drug, was discovered accidentally by Leo Sternbach in 1955, made available in 1960 by Hoffmann–La Roche, since 1963, has marketed the benzodiazepine diazepam. In 1977 benzodiazepines were globally the most prescribed medications, they are in the family of drugs known as minor tranquilizers. Benzodiazepines enhance the effect of the neurotransmitter gamma-aminobutyric acid at the GABAA receptor, resulting in sedative, anxiolytic and muscle relaxant properties. High doses of many shorter-acting benzodiazepines may cause anterograde amnesia and dissociation; these properties make benzodiazepines useful in treating anxiety, agitation, muscle spasms, alcohol withdrawal and as a premedication for medical or dental procedures. Benzodiazepines are categorized as either intermediary, or long-acting. Short- and intermediate-acting benzodiazepines are preferred for the treatment of insomnia.
Benzodiazepines are viewed as safe and effective for short-term use, although cognitive impairment and paradoxical effects such as aggression or behavioral disinhibition occur. A minority of people can have paradoxical reactions such as worsened panic. Benzodiazepines are associated with increased risk of suicide. Long-term use is controversial because of concerns about decreasing effectiveness, physical dependence, an increased risk of dementia. Stopping benzodiazepines leads to improved physical and mental health; the elderly are at an increased risk of both short- and long-term adverse effects, as a result, all benzodiazepines are listed in the Beers List of inappropriate medications for older adults. There is controversy concerning the safety of benzodiazepines in pregnancy. While they are not major teratogens, uncertainty remains as to whether they cause cleft palate in a small number of babies and whether neurobehavioural effects occur as a result of prenatal exposure. Benzodiazepines can cause dangerous deep unconsciousness.
However, they are less toxic than their predecessors, the barbiturates, death results when a benzodiazepine is the only drug taken. When combined with other central nervous system depressants such as alcoholic drinks and opioids, the potential for toxicity and fatal overdose increases. Benzodiazepines are misused and taken in combination with other drugs of abuse. Benzodiazepines possess psycholeptic, hypnotic, anticonvulsant, muscle relaxant, amnesic actions, which are useful in a variety of indications such as alcohol dependence, anxiety disorders, panic and insomnia. Most are administered orally. In general, benzodiazepines are well-tolerated and are safe and effective drugs in the short term for a wide range of conditions. Tolerance can develop to their effects and there is a risk of dependence, upon discontinuation a withdrawal syndrome may occur; these factors, combined with other possible secondary effects after prolonged use such as psychomotor, cognitive, or memory impairments, limit their long-term applicability.
The effects of long-term use or misuse include the tendency to cause or worsen cognitive deficits and anxiety. The College of Physicians and Surgeons of British Columbia recommends discontinuing the usage of benzodiazepines in those on opioids and those who have used them long term. Benzodiazepines can have serious adverse health outcomes, these findings support clinical and regulatory efforts to reduce usage in combination with non-benzodiazepine receptor agonists; because of their effectiveness and rapid onset of anxiolytic action, benzodiazepines are used for the treatment of anxiety associated with panic disorder. However, there is disagreement among expert bodies regarding the long-term use of benzodiazepines for panic disorder; the views range from those that hold that benzodiazepines are not effective long-term and that they should be reserved for treatment-resistant cases to those that hold that they are as effective in the long term as selective serotonin reuptake inhibitors. The American Psychiatric Association guidelines note that, in general, benzodiazepines are well tolerated, their use for the initial treatment for panic disorder is supported by numerous controlled trials.
APA states that there is insufficient evidence to recommend any of the established panic disorder treatments over another. The choice of treatment between benzodiazepines, SSRIs, serotonin–norepinephrine reuptake inhibitors, tricyclic antidepressants, psychotherapy should be based on the patient's history and other individual characteristics. Selective serotonin reuptake inhibitors are to be the best choice of pharmacotherapy for many patients with panic disorder, but benzodiazepines are often used, some studies suggest that these medications are still used with greater frequency than the SSRIs. One advantage of benzodiazepines is that they alleviate the anxiety symptoms much faster than antidepressants, therefore may be preferred in patients for whom rapid symptom control is critical. However, this advantage is offset by the possibility of developing benzodiazepine dependence. APA does not recommend benzodiazepines for persons with depressive