Geometry
Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of formal mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into an axiomatic form by Euclid, whose treatment, Euclid's Elements, set a standard for many centuries to follow. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC. Islamic scientists expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid analytic footing by mathematicians such as René Descartes and Pierre de Fermat. Since and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, describing spaces that lie beyond the normal range of human experience.
While geometry has evolved throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, planes, surfaces and curves, as well as the more advanced notions of manifolds and topology or metric. Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. Contemporary geometry has many subfields: Euclidean geometry is geometry in its classical sense; the mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures and analytic geometry. Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of linear algebra to study problems in geometry, it has applications in physics, including in general relativity. Topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this means dealing with large-scale properties of spaces, such as connectedness and compactness.
Convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues using techniques of real analysis. It has close connections to convex analysis and functional analysis and important applications in number theory. Algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques, it has applications including cryptography and string theory. Discrete geometry is concerned with questions of relative position of simple geometric objects, such as points and circles, it shares many principles with combinatorics. Computational geometry deals with algorithms and their implementations for manipulating geometrical objects. Although being a young area of geometry, it has many applications in computer vision, image processing, computer-aided design, medical imaging, etc; the earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles and volumes, which were developed to meet some practical need in surveying, construction and various crafts.
The earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum. Clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiter's position and motion within time-velocity space; these geometric procedures anticipated the Oxford Calculators, including the mean speed theorem, by 14 centuries. South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks. In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore, he is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. Pythagoras established the Pythagorean School, credited with the first proof of the Pythagorean theorem, though the statement of the theorem has a long history.
Eudoxus developed the method of exhaustion, which allowed the calculation of areas and volumes of curvilinear figures, as well as a theory of ratios that avoided the problem of incommensurable magnitudes, which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements considered the most successful and influential textbook of all time, introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom and proof. Although most of the contents of the Elements were known, Euclid arranged them into a single, coherent logical framework; the Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today. Archimedes of Syracuse used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, gave remarkably accurate approximations of Pi.
He studied the sp
Area
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the two-dimensional surface of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat, it is the two-dimensional analog of the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size. In the International System of Units, the standard unit of area is the square metre, the area of a square whose sides are one metre long. A shape with an area of three square metres would have the same area as three such squares. In mathematics, the unit square is defined to have area one, the area of any other shape or surface is a dimensionless real number. There are several well-known formulas for the areas of simple shapes such as triangles and circles.
Using these formulas, the area of any polygon can be found by dividing the polygon into triangles. For shapes with curved boundary, calculus is required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area. Formulas for the surface areas of simple shapes were computed by the ancient Greeks, but computing the surface area of a more complicated shape requires multivariable calculus. Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, though not every subset is measurable. In general, area in higher mathematics is seen as a special case of volume for two-dimensional regions.
Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers. It can be proved. An approach to defining what is meant by "area" is through axioms. "Area" can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties: For all S in M, a ≥ 0. If S and T are in M so are S ∪ T and S ∩ T, a = a + a − a. If S and T are in M with S ⊆ T T − S is in M and a = a − a. If a set S is in M and S is congruent to T T is in M and a = a; every rectangle R is in M. If the rectangle has length h and breadth k a = hk. Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. S ⊆ Q ⊆ T. If there is a unique number c such that a ≤ c ≤ a for all such step regions S and T a = c, it can be proved that such an area function exists. Every unit of length has a corresponding unit of area, namely the area of a square with the given side length.
Thus areas can be measured in square metres, square centimetres, square millimetres, square kilometres, square feet, square yards, square miles, so forth. Algebraically, these units can be thought of as the squares of the corresponding length units; the SI unit of area is the square metre, considered an SI derived unit. Calculation of the area of a square whose length and width are 1 metre would be: 1 metre x 1 metre = 1 m2and so, a rectangle with different sides would have an area in square units that can be calculated as: 3 metres x 2 metres = 6 m2; this is equivalent to 6 million square millimetres. Other useful conversions are: 1 square kilometre = 1,000,000 square metres 1 square metre = 10,000 square centimetres = 1,000,000 square millimetres 1 square centimetre = 100 square millimetres. In non-metric units, the conversion between two square units is the square of the conversion between the corresponding length units. 1 foot = 12 inches,the relationship between square feet and square inches is 1 square foot = 144 square inches,where 144 = 122 = 12 × 12.
Similarly: 1 square yard = 9 square feet 1 square mile = 3,097,600 square yards = 27,878,400 square feetIn addition, conversion factors include: 1 square inch = 6.4516 square centimetres 1 square foot = 0.09290304 square metres 1 square yard = 0.83612736 square metres 1 square mile = 2.589988110336 square kilometres There are several other common units for area. The are was the original unit of area in the metric system, with: 1 are = 100 square metresThough the are has fallen out of use, the hectare is still used to measure land: 1 hectare = 100 ares = 10,000 square metres = 0.01 square kilometresOther uncommon metric units of area include the tetrad, the hectad, the myriad. The acre is commonly used to measure land areas, where 1 acre = 4,840 square yards = 43,560 square feet. An acre is 40% of a hectare. On the atomic scale, area is measured in units of barns, such that: 1 barn = 10−28 square meters; the barn is used in describing the cross-sectional area of interaction in nuclear physics.
In India, 20 dhurki = 1 dhur 20 dhur = 1 khatha 20 khata = 1 bigha 32 khata = 1 acre In the 5th century BCE, Hippocrates of Chios was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the lune of
Isotoxal figure
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged; the term isotoxal is derived from the Greek τοξον meaning arc. An isotoxal polygon is an equilateral polygon; the duals of isotoxal polygons are isogonal polygons. In general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is an isotoxal polygon with D2 symmetry. All regular polygons are isotoxal, having double the minimum symmetry order: a regular n-gon has Dn dihedral symmetry. A regular 2n-gon is an isotoxal polygon and can be marked with alternately colored vertices, removing the line of reflection through the mid-edges. Regular polyhedra are isohedral and isotoxal. Quasiregular polyhedra are not isohedral. Not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal.
For instance, the truncated icosahedron has two types of edges: hexagon-hexagon and hexagon-pentagon, it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge. An isotoxal polyhedron has the same dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids, 8 formed by the Kepler–Poinsot polyhedra, six more as quasiregular star polyhedra and their duals. There are at least 5 polygonal tilings of the Euclidean plane that are isotoxal, infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the regular hyperbolic tilings, non-right groups. Table of polyhedron dihedral angles Vertex-transitive Face-transitive Cell-transitive Peter R. Cromwell, Cambridge University Press 1997, ISBN 0-521-55432-2, p. 371 Transitivity Grünbaum, Branko. C.. Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. CS1 maint: Multiple names: authors list Coxeter, Harold Scott MacDonald.
"Uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 246: 401–450, doi:10.1098/rsta.1954.0003, ISSN 0080-4614, JSTOR 91532, MR 0062446
Pi
The number π is a mathematical constant. Defined as the ratio of a circle's circumference to its diameter, it now has various equivalent definitions and appears in many formulas in all areas of mathematics and physics, it is equal to 3.14159. It has been represented by the Greek letter "π" since the mid-18th century, though it is sometimes spelled out as "pi", it is called Archimedes' constant. Being an irrational number, π cannot be expressed as a common fraction. Still, fractions such as 22/7 and other rational numbers are used to approximate π; the digits appear to be randomly distributed. In particular, the digit sequence of π is conjectured to satisfy a specific kind of statistical randomness, but to date, no proof of this has been discovered. Π is a transcendental number. This transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. Ancient civilizations required accurate computed values to approximate π for practical reasons, including the Egyptians and Babylonians.
Around 250 BC the Greek mathematician Archimedes created an algorithm for calculating it. In the 5th century AD Chinese mathematics approximated π to seven digits, while Indian mathematics made a five-digit approximation, both using geometrical techniques; the first exact formula for π, based on infinite series, was not available until a millennium when in the 14th century the Madhava–Leibniz series was discovered in Indian mathematics. In the 20th and 21st centuries and computer scientists discovered new approaches that, when combined with increasing computational power, extended the decimal representation of π to many trillions of digits after the decimal point. All scientific applications require no more than a few hundred digits of π, many fewer, so the primary motivation for these computations is the quest to find more efficient algorithms for calculating lengthy numeric series, as well as the desire to break records; the extensive calculations involved have been used to test supercomputers and high-precision multiplication algorithms.
Because its most elementary definition relates to the circle, π is found in many formulae in trigonometry and geometry those concerning circles and spheres. In more modern mathematical analysis, the number is instead defined using the spectral properties of the real number system, as an eigenvalue or a period, without any reference to geometry, it appears therefore in areas of mathematics and the sciences having little to do with the geometry of circles, such as number theory and statistics, as well as in all areas of physics. The ubiquity of π makes it one of the most known mathematical constants both inside and outside the scientific community. Several books devoted to π have been published, record-setting calculations of the digits of π result in news headlines. Attempts to memorize the value of π with increasing precision have led to records of over 70,000 digits; the symbol used by mathematicians to represent the ratio of a circle's circumference to its diameter is the lowercase Greek letter π, sometimes spelled out as pi, derived from the first letter of the Greek word perimetros, meaning circumference.
In English, π is pronounced as "pie". In mathematical use, the lowercase letter π is distinguished from its capitalized and enlarged counterpart ∏, which denotes a product of a sequence, analogous to how ∑ denotes summation; the choice of the symbol π is discussed in the section Adoption of the symbol π. Π is defined as the ratio of a circle's circumference C to its diameter d: π = C d The ratio C/d is constant, regardless of the circle's size. For example, if a circle has twice the diameter of another circle it will have twice the circumference, preserving the ratio C/d; this definition of π implicitly makes use of flat geometry. Here, the circumference of a circle is the arc length around the perimeter of the circle, a quantity which can be formally defined independently of geometry using limits, a concept in calculus. For example, one may directly compute the arc length of the top half of the unit circle, given in Cartesian coordinates by the equation x2 + y2 = 1, as the integral: π = ∫ − 1 1 d x 1 − x 2.
An integral such as this was adopted as the definition of π by Karl Weierstrass, who defined it directly as an integral in 1841. Definitions of π such as these that rely on a notion of circumference, hence implicitly on concepts of the integral calculus, are no longer common in the literature. Remmert explains that this is because in many modern treatments of calculus, differential calculus precedes integral calculus in the university curriculum, so it is desirable to have a definition of π that does not rely on the latter. One such definition, due to Richard Baltzer, popularized by Edmund Landau, is the following: π is twice the smallest positive number at which the cosine function equals 0; the cosine can be defined independently of geometry as a power series, or as the solution of a differen
Vertex (geometry)
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices; the vertex of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect, or any appropriate combination of rays and lines that result in two straight "sides" meeting at one place. A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object. In a polygon, a vertex is called "convex" if the internal angle of the polygon, that is, the angle formed by the two edges at the vertex, with the polygon inside the angle, is less than π radians. More a vertex of a polyhedron or polytope is convex if the intersection of the polyhedron or polytope with a sufficiently small sphere centered at the vertex is convex, concave otherwise. Polytope vertices are related to vertices of graphs, in that the 1-skeleton of a polytope is a graph, the vertices of which correspond to the vertices of the polytope, in that a graph can be viewed as a 1-dimensional simplicial complex the vertices of which are the graph's vertices.
However, in graph theory, vertices may have fewer than two incident edges, not allowed for geometric vertices. There is a connection between geometric vertices and the vertices of a curve, its points of extreme curvature: in some sense the vertices of a polygon are points of infinite curvature, if a polygon is approximated by a smooth curve there will be a point of extreme curvature near each polygon vertex. However, a smooth curve approximation to a polygon will have additional vertices, at the points where its curvature is minimal. A vertex of a plane tiling or tessellation is a point. More a tessellation can be viewed as a kind of topological cell complex, as can the faces of a polyhedron or polytope. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x. There are two types of principal vertices: mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies in P. According to the two ears theorem, every simple polygon has at least two ears.
A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedron's surface has Euler characteristic V − E + F = 2, where V is the number of vertices, E is the number of edges, F is the number of faces; this equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, a cube has 12 edges and 6 faces, hence 8 vertices. In computer graphics, objects are represented as triangulated polyhedra in which the object vertices are associated not only with three spatial coordinates but with other graphical information necessary to render the object such as colors, reflectance properties and surface normal. Weisstein, Eric W. "Polygon Vertex". MathWorld. Weisstein, Eric W. "Polyhedron Vertex". MathWorld. Weisstein, Eric W. "Principal Vertex". MathWorld
Regular polygon
In Euclidean geometry, a regular polygon is a polygon, equiangular and equilateral. Regular polygons may be either star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed; these properties apply to all regular polygons, whether star. A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle; that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon has an inscribed circle or incircle, tangent to every side at the midpoint, thus a regular polygon is a tangential polygon. A regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. See constructible polygon; the symmetry group of an n-sided regular polygon is dihedral group Dn: D2, D3, D4...
It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center. If n is then half of these axes pass through two opposite vertices, the other half through the midpoint of opposite sides. If n is odd all axes pass through a vertex and the midpoint of the opposite side. All regular simple polygons are convex; those having the same number of sides are similar. An n-sided convex regular polygon is denoted by its Schläfli symbol. For n < 3, we have two degenerate cases: Monogon Degenerate in ordinary space. Digon. In certain contexts all the polygons considered. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular and the faces will be described as triangle, pentagon, etc. For a regular convex n-gon, each interior angle has a measure of: × 180 degrees, or equivalently 180 n degrees; as the number of sides, n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides the internal angle is 179.964°.
As the number of sides increase, the internal angle can come close to 180°, the shape of the polygon approaches that of a circle. However the polygon can never become a circle; the value of the internal angle can never become equal to 180°, as the circumference would become a straight line. For this reason, a circle is not a polygon with an infinite number of sides. For n > 2, the number of diagonals is 1 2 n. The diagonals divide the polygon into 1, 4, 11, 24, … pieces OEIS: A007678. For a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from an arbitrary point in the plane to the vertices, we have ∑ i = 1 n d i 4 n + 3 R 4 = 2. For a regular n-gon, the sum of the perpendicular distances from any interior point to the n sides is n times the apothem; this is a generalization of Viviani's theorem for the n. The circumradius R from the center of a regular polygon to one of the vertices is related to the side length s or to the apothem a by R = s 2 sin = a cos
Polygon
In elementary geometry, a polygon is a plane figure, described by a finite number of straight line segments connected to form a closed polygonal chain or polygonal circuit. The solid plane region, the bounding circuit, or the two together, may be called a polygon; the segments of a polygonal circuit are called its edges or sides, the points where two edges meet are the polygon's vertices or corners. The interior of a solid polygon is sometimes called its body. An n-gon is a polygon with n sides. A simple polygon is one. Mathematicians are concerned only with the bounding polygonal chains of simple polygons and they define a polygon accordingly. A polygonal boundary may be allowed to cross over itself, creating star polygons and other self-intersecting polygons. A polygon is a 2-dimensional example of the more general polytope in any number of dimensions. There are many more generalizations of polygons defined for different purposes; the word polygon derives from the Greek adjective πολύς "much", "many" and γωνία "corner" or "angle".
It has been suggested. Polygons are classified by the number of sides. See the table below. Polygons may be characterized by their convexity or type of non-convexity: Convex: any line drawn through the polygon meets its boundary twice; as a consequence, all its interior angles are less than 180°. Equivalently, any line segment with endpoints on the boundary passes through only interior points between its endpoints. Non-convex: a line may be found which meets its boundary more than twice. Equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple: the boundary of the polygon does not cross itself. All convex polygons are simple. Concave. Non-convex and simple. There is at least one interior angle greater than 180°. Star-shaped: the whole interior is visible from at least one point, without crossing any edge; the polygon must be simple, may be convex or concave. All convex polygons are star-shaped. Self-intersecting: the boundary of the polygon crosses itself.
The term complex is sometimes used in contrast to simple, but this usage risks confusion with the idea of a complex polygon as one which exists in the complex Hilbert plane consisting of two complex dimensions. Star polygon: a polygon which self-intersects in a regular way. A polygon can not be both star-shaped. Equiangular: all corner angles are equal. Cyclic: all corners lie on a single circle, called the circumcircle. Isogonal or vertex-transitive: all corners lie within the same symmetry orbit; the polygon is cyclic and equiangular. Equilateral: all edges are of the same length; the polygon need not be convex. Tangential: all sides are tangent to an inscribed circle. Isotoxal or edge-transitive: all sides lie within the same symmetry orbit; the polygon is equilateral and tangential. Regular: the polygon is both isogonal and isotoxal. Equivalently, it is both equilateral, or both equilateral and equiangular. A non-convex regular polygon is called a regular star polygon. Rectilinear: the polygon's sides meet at right angles, i.e. all its interior angles are 90 or 270 degrees.
Monotone with respect to a given line L: every line orthogonal to L intersects the polygon not more than twice. Euclidean geometry is assumed throughout. Any polygon has as many corners; each corner has several angles. The two most important ones are: Interior angle – The sum of the interior angles of a simple n-gon is π radians or × 180 degrees; this is because any simple n-gon can be considered to be made up of triangles, each of which has an angle sum of π radians or 180 degrees. The measure of any interior angle of a convex regular n-gon is 180 − 360 n degrees; the interior angles of regular star polygons were first studied by Poinsot, in the same paper in which he describes the four regular star polyhedra: for a regular p q -gon, each interior angle is π p radians or 180 p degrees. Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n-gon, the angle "turned" at a corner is external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°.
This argument can be generalized to concave simple polygons, if external angles that turn in the opposite direction are subtracted from the total turned. Tracing around an n-gon in general, the sum of the exterior angles can be any integer multiple d of 360°, e.g. 720° for a pentagram and 0° for an angular "eight" or antiparallelogram, where d is the density or starriness of the polygon. See orbit. In this section, the vertices of the polygon under consideration are taken to be, ( x 1