1.
Astronomical object
–
An astronomical object or celestial object is a naturally occurring physical entity, association, or structure that current astronomy has demonstrated to exist in the observable universe. In astronomy, the object and body are often used interchangeably. Examples for astronomical objects include planetary systems, star clusters, nebulae and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both body and object, It is a body when referring to the nucleus of ice and dust. The universe can be viewed as having a hierarchical structure, at the largest scales, the fundamental component of assembly is the galaxy. Galaxies are organized groups and clusters, often within larger superclusters. Disc galaxies encompass lenticular and spiral galaxies with features, such as spiral arms, at the core, most galaxies have a supermassive black hole, which may result in an active galactic nucleus. Galaxies can also have satellites in the form of dwarf galaxies, the constituents of a galaxy are formed out of gaseous matter that assembles through gravitational self-attraction in a hierarchical manner. At this level, the fundamental components are the stars. The great variety of forms are determined almost entirely by the mass, composition. Stars may be found in systems that orbit about each other in a hierarchical organization. A planetary system and various objects such as asteroids, comets and debris. The various distinctive types of stars are shown by the Hertzsprung–Russell diagram —a plot of stellar luminosity versus surface temperature. Each star follows a track across this diagram. If this track takes the star through a region containing a variable type. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae, the table below lists the general categories of bodies and objects by their location or structure. International Astronomical Naming Commission List of light sources List of Solar System objects Lists of astronomical objects SkyChart, Sky & Telescope Monthly skymaps for every location on Earth
2.
Circle
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles
3.
Parabola
–
A parabola is a two-dimensional, mirror-symmetrical curve, which is approximately U-shaped when oriented as shown in the diagram below, but which can be in any orientation in its plane. It fits any of several different mathematical descriptions which can all be proved to define curves of exactly the same shape. One description of a parabola involves a point and a line, the focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from both the directrix and the focus, a parabola is a graph of a quadratic function, y = x2, for example. The line perpendicular to the directrix and passing through the focus is called the axis of symmetry, the point on the parabola that intersects the axis of symmetry is called the vertex, and is the point where the parabola is most sharply curved. The distance between the vertex and the focus, measured along the axis of symmetry, is the focal length, the latus rectum is the chord of the parabola which is parallel to the directrix and passes through the focus. Parabolas can open up, down, left, right, or in some arbitrary direction. Any parabola can be repositioned and rescaled to fit exactly on any other parabola — that is, conversely, light that originates from a point source at the focus is reflected into a parallel beam, leaving the parabola parallel to the axis of symmetry. The same effects occur with sound and other forms of energy and this reflective property is the basis of many practical uses of parabolas. The parabola has many important applications, from an antenna or parabolic microphone to automobile headlight reflectors to the design of ballistic missiles. They are frequently used in physics, engineering, and many other areas, the earliest known work on conic sections was by Menaechmus in the fourth century BC. He discovered a way to solve the problem of doubling the cube using parabolas, the name parabola is due to Apollonius who discovered many properties of conic sections. It means application, referring to application of concept, that has a connection with this curve. The focus–directrix property of the parabola and other conics is due to Pappus, Galileo showed that the path of a projectile follows a parabola, a consequence of uniform acceleration due to gravity. The idea that a reflector could produce an image was already well known before the invention of the reflecting telescope. Designs were proposed in the early to mid seventeenth century by many mathematicians including René Descartes, Marin Mersenne, when Isaac Newton built the first reflecting telescope in 1668, he skipped using a parabolic mirror because of the difficulty of fabrication, opting for a spherical mirror. Parabolic mirrors are used in most modern reflecting telescopes and in satellite dishes, solving for y yields y =14 f x 2. The length of the chord through the focus is called latus rectum, one half of it semi latus rectum
4.
Gravity
–
Gravity, or gravitation, is a natural phenomenon by which all things with mass are brought toward one another, including planets, stars and galaxies. Since energy and mass are equivalent, all forms of energy, including light, on Earth, gravity gives weight to physical objects and causes the ocean tides. Gravity has a range, although its effects become increasingly weaker on farther objects. The most extreme example of this curvature of spacetime is a hole, from which nothing can escape once past its event horizon. More gravity results in time dilation, where time lapses more slowly at a lower gravitational potential. Gravity is the weakest of the four fundamental interactions of nature, the gravitational attraction is approximately 1038 times weaker than the strong force,1036 times weaker than the electromagnetic force and 1029 times weaker than the weak force. As a consequence, gravity has an influence on the behavior of subatomic particles. On the other hand, gravity is the dominant interaction at the macroscopic scale, for this reason, in part, pursuit of a theory of everything, the merging of the general theory of relativity and quantum mechanics into quantum gravity, has become an area of research. While the modern European thinkers are credited with development of gravitational theory, some of the earliest descriptions came from early mathematician-astronomers, such as Aryabhata, who had identified the force of gravity to explain why objects do not fall out when the Earth rotates. Later, the works of Brahmagupta referred to the presence of force, described it as an attractive force. Modern work on gravitational theory began with the work of Galileo Galilei in the late 16th and this was a major departure from Aristotles belief that heavier objects have a higher gravitational acceleration. Galileo postulated air resistance as the reason that objects with less mass may fall slower in an atmosphere, galileos work set the stage for the formulation of Newtons theory of gravity. In 1687, English mathematician Sir Isaac Newton published Principia, which hypothesizes the inverse-square law of universal gravitation. Newtons theory enjoyed its greatest success when it was used to predict the existence of Neptune based on motions of Uranus that could not be accounted for by the actions of the other planets. Calculations by both John Couch Adams and Urbain Le Verrier predicted the position of the planet. A discrepancy in Mercurys orbit pointed out flaws in Newtons theory, the issue was resolved in 1915 by Albert Einsteins new theory of general relativity, which accounted for the small discrepancy in Mercurys orbit. The simplest way to test the equivalence principle is to drop two objects of different masses or compositions in a vacuum and see whether they hit the ground at the same time. Such experiments demonstrate that all objects fall at the rate when other forces are negligible
5.
Inverse trigonometric functions
–
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry. There are several notations used for the trigonometric functions. The most common convention is to name inverse trigonometric functions using a prefix, e. g. arcsin, arccos, arctan. This convention is used throughout the article, when measuring in radians, an angle of θ radians will correspond to an arc whose length is rθ, where r is the radius of the circle. Similarly, in programming languages the inverse trigonometric functions are usually called asin, acos. The notations sin−1, cos−1, tan−1, etc, the confusion is somewhat ameliorated by the fact that each of the reciprocal trigonometric functions has its own name—for example, −1 = sec. Nevertheless, certain authors advise against using it for its ambiguity, since none of the six trigonometric functions are one-to-one, they are restricted in order to have inverse functions. There are multiple numbers y such that sin = x, for example, sin =0, when only one value is desired, the function may be restricted to its principal branch. With this restriction, for x in the domain the expression arcsin will evaluate only to a single value. These properties apply to all the trigonometric functions. The principal inverses are listed in the following table, if x is allowed to be a complex number, then the range of y applies only to its real part. Trigonometric functions of trigonometric functions are tabulated below. This is derived from the tangent addition formula tan = tan + tan 1 − tan tan , like the sine and cosine functions, the inverse trigonometric functions can be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative,11 − z 2, as a binomial series, the series for arctangent can similarly be derived by expanding its derivative 11 + z 2 in a geometric series and applying the integral definition above. Arcsin = z + z 33 + z 55 + z 77 + ⋯ = ∑ n =0 ∞, for example, arccos x = π /2 − arcsin x, arccsc x = arcsin , and so on. Alternatively, this can be expressed, arctan z = ∑ n =0 ∞22 n 2. There are two cuts, from −i to the point at infinity, going down the imaginary axis and it works best for real numbers running from −1 to 1
6.
Medieval Latin
–
Despite the clerical origin of many of its authors, medieval Latin should not be confused with Ecclesiastical Latin. There is no consensus on the exact boundary where Late Latin ends. Medieval Latin had a vocabulary, which freely borrowed from other sources. Greek provided much of the vocabulary of Christianity. The various Germanic languages spoken by the Germanic tribes, who invaded southern Europe, were major sources of new words. Germanic leaders became the rulers of parts of the Roman Empire that they conquered, other more ordinary words were replaced by coinages from Vulgar Latin or Germanic sources because the classical words had fallen into disuse. Latin was also spread to such as Ireland and Germany. Works written in the lands, where Latin was a language with no relation to the local vernacular, also influenced the vocabulary. English words like abstract, subject, communicate, matter, probable, the high point of the development of medieval Latin as a literary language came with the Carolingian renaissance, a rebirth of learning kindled under the patronage of Charlemagne, king of the Franks. On the other hand, strictly speaking there was no form of medieval Latin. Every Latin author in the period spoke Latin as a second language, with varying degrees of fluency, and syntax, grammar. For instance, rather than following the classical Latin practice of placing the verb at the end. Unlike classical Latin, where esse was the auxiliary verb, medieval Latin writers might use habere as an auxiliary, similar to constructions in Germanic. The accusative and infinitive construction in classical Latin was often replaced by a clause introduced by quod or quia. This is almost identical, for example, to the use of que in similar constructions in French. In every age from the late 8th century onwards, there were learned writers who were familiar enough with classical syntax to be aware that these forms and usages were wrong, however the use of quod to introduce subordinate clauses was especially pervasive and is found at all levels. That resulted in two features of Medieval Latin compared with Classical Latin. First, many attempted to show off their knowledge of Classical Latin by using rare or archaic constructions
7.
Mercury (planet)
–
Mercury is the smallest and innermost planet in the Solar System. Its orbital period around the Sun of 88 days is the shortest of all the planets in the Solar System and it is named after the Roman deity Mercury, the messenger to the gods. Like Venus, Mercury orbits the Sun within Earths orbit as a planet, so it can only be seen visually in the morning or the evening sky. Also, like Venus and the Moon, the displays the complete range of phases as it moves around its orbit relative to Earth. Seen from Earth, this cycle of phases reoccurs approximately every 116 days, although Mercury can appear as a bright star-like object when viewed from Earth, its proximity to the Sun often makes it more difficult to see than Venus. Mercury is tidally or gravitationally locked with the Sun in a 3,2 resonance, as seen relative to the fixed stars, it rotates on its axis exactly three times for every two revolutions it makes around the Sun. As seen from the Sun, in a frame of reference that rotates with the orbital motion, an observer on Mercury would therefore see only one day every two years. Mercurys axis has the smallest tilt of any of the Solar Systems planets, at aphelion, Mercury is about 1.5 times as far from the Sun as it is at perihelion. Mercurys surface appears heavily cratered and is similar in appearance to the Moons, the polar regions are constantly below 180 K. The planet has no natural satellites. Mercury is one of four planets in the Solar System. It is the smallest planet in the Solar System, with a radius of 2,439.7 kilometres. Mercury is also smaller—albeit more massive—than the largest natural satellites in the Solar System, Ganymede, Mercury consists of approximately 70% metallic and 30% silicate material. Mercurys density is the second highest in the Solar System at 5.427 g/cm3, Mercurys density can be used to infer details of its inner structure. Although Earths high density results appreciably from gravitational compression, particularly at the core, Mercury is much smaller, therefore, for it to have such a high density, its core must be large and rich in iron. Geologists estimate that Mercurys core occupies about 55% of its volume, Research published in 2007 suggests that Mercury has a molten core. Surrounding the core is a 500–700 km mantle consisting of silicates, based on data from the Mariner 10 mission and Earth-based observation, Mercurys crust is estimated to be 35 km thick. One distinctive feature of Mercurys surface is the presence of narrow ridges
8.
Venus
–
Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. It has the longest rotation period of any planet in the Solar System and it is named after the Roman goddess of love and beauty. It is the second-brightest natural object in the sky after the Moon, reaching an apparent magnitude of −4.6. Because Venus orbits within Earths orbit it is a planet and never appears to venture far from the Sun. Venus is a planet and is sometimes called Earths sister planet because of their similar size, mass, proximity to the Sun. It is radically different from Earth in other respects and it has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the surface is 92 times that of Earth. Venus is by far the hottest planet in the Solar System, with a surface temperature of 735 K. Venus is shrouded by an layer of highly reflective clouds of sulfuric acid. It may have had water oceans in the past, but these would have vaporized as the temperature rose due to a greenhouse effect. The water has probably photodissociated, and the hydrogen has been swept into interplanetary space by the solar wind because of the lack of a planetary magnetic field. Venuss surface is a dry desertscape interspersed with rocks and is periodically resurfaced by volcanism. As one of the brightest objects in the sky, Venus has been a fixture in human culture for as long as records have existed. It has been sacred to gods of many cultures, and has been a prime inspiration for writers and poets as the morning star. Venus was the first planet to have its motions plotted across the sky, as the closest planet to Earth, Venus has been a prime target for early interplanetary exploration. It was the first planet beyond Earth visited by a spacecraft, Venuss thick clouds render observation of its surface impossible in visible light, and the first detailed maps did not emerge until the arrival of the Magellan orbiter in 1991. Plans have been proposed for rovers or more missions. Venus is one of the four planets in the Solar System
9.
Earth
–
Earth, otherwise known as the World, or the Globe, is the third planet from the Sun and the only object in the Universe known to harbor life. It is the densest planet in the Solar System and the largest of the four terrestrial planets, according to radiometric dating and other sources of evidence, Earth formed about 4.54 billion years ago. Earths gravity interacts with objects in space, especially the Sun. During one orbit around the Sun, Earth rotates about its axis over 365 times, thus, Earths axis of rotation is tilted, producing seasonal variations on the planets surface. The gravitational interaction between the Earth and Moon causes ocean tides, stabilizes the Earths orientation on its axis, Earths lithosphere is divided into several rigid tectonic plates that migrate across the surface over periods of many millions of years. About 71% of Earths surface is covered with water, mostly by its oceans, the remaining 29% is land consisting of continents and islands that together have many lakes, rivers and other sources of water that contribute to the hydrosphere. The majority of Earths polar regions are covered in ice, including the Antarctic ice sheet, Earths interior remains active with a solid iron inner core, a liquid outer core that generates the Earths magnetic field, and a convecting mantle that drives plate tectonics. Within the first billion years of Earths history, life appeared in the oceans and began to affect the Earths atmosphere and surface, some geological evidence indicates that life may have arisen as much as 4.1 billion years ago. Since then, the combination of Earths distance from the Sun, physical properties, in the history of the Earth, biodiversity has gone through long periods of expansion, occasionally punctuated by mass extinction events. Over 99% of all species that lived on Earth are extinct. Estimates of the number of species on Earth today vary widely, over 7.4 billion humans live on Earth and depend on its biosphere and minerals for their survival. Humans have developed diverse societies and cultures, politically, the world has about 200 sovereign states, the modern English word Earth developed from a wide variety of Middle English forms, which derived from an Old English noun most often spelled eorðe. It has cognates in every Germanic language, and their proto-Germanic root has been reconstructed as *erþō, originally, earth was written in lowercase, and from early Middle English, its definite sense as the globe was expressed as the earth. By early Modern English, many nouns were capitalized, and the became the Earth. More recently, the name is simply given as Earth. House styles now vary, Oxford spelling recognizes the lowercase form as the most common, another convention capitalizes Earth when appearing as a name but writes it in lowercase when preceded by the. It almost always appears in lowercase in colloquial expressions such as what on earth are you doing, the oldest material found in the Solar System is dated to 4. 5672±0.0006 billion years ago. By 4. 54±0.04 Gya the primordial Earth had formed, the formation and evolution of Solar System bodies occurred along with the Sun
10.
Orbit
–
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet about a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating path around a body, to a close approximation, planets and satellites follow elliptical orbits, with the central mass being orbited at a focal point of the ellipse, as described by Keplers laws of planetary motion. For ease of calculation, in most situations orbital motion is adequately approximated by Newtonian Mechanics, historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of celestial spheres. This model posited the existence of perfect moving spheres or rings to which the stars and it assumed the heavens were fixed apart from the motion of the spheres, and was developed without any understanding of gravity. After the planets motions were accurately measured, theoretical mechanisms such as deferent. Originally geocentric it was modified by Copernicus to place the sun at the centre to help simplify the model, the model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. Second, he found that the speed of each planet is not constant, as had previously been thought. Third, Kepler found a relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter,5. 23/11.862, is equal to that for Venus,0. 7233/0.6152. Idealised orbits meeting these rules are known as Kepler orbits, isaac Newton demonstrated that Keplers laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were conic sections. Newton showed that, for a pair of bodies, the sizes are in inverse proportion to their masses. Where one body is more massive than the other, it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Lagrange developed a new approach to Newtonian mechanics emphasizing energy more than force, in a dramatic vindication of classical mechanics, in 1846 le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits, in relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions but the differences are measurable. Essentially all the evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy
11.
Conic section
–
In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse, the circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, the conic sections of the Euclidean plane have various distinguishing properties. Many of these have used as the basis for a definition of the conic sections. The type of conic is determined by the value of the eccentricity, in analytic geometry, a conic may be defined as a plane algebraic curve of degree 2, that is, as the set of points whose coordinates satisfy a quadratic equation in two variables. This equation may be written in form, and some geometric properties can be studied as algebraic conditions. In the Euclidean plane, the conic sections appear to be different from one another. By extending the geometry to a projective plane this apparent difference vanishes, further extension, by expanding the real coordinates to admit complex coordinates, provides the means to see this unification algebraically. The conic sections have been studied for thousands of years and have provided a source of interesting. A conic is the curve obtained as the intersection of a plane, called the cutting plane and we shall assume that the cone is a right circular cone for the purpose of easy description, but this is not required, any double cone with some circular cross-section will suffice. Planes that pass through the vertex of the cone will intersect the cone in a point and these are called degenerate conics and some authors do not consider them to be conics at all. Unless otherwise stated, we assume that conic refers to a non-degenerate conic. There are three types of conics, the ellipse, parabola, and hyperbola, the circle is a special kind of ellipse, although historically it had been considered as a fourth type. The circle and the ellipse arise when the intersection of the cone and plane is a closed curve, if the cutting plane is parallel to exactly one generating line of the cone, then the conic is unbounded and is called a parabola. In the remaining case, the figure is a hyperbola, in this case, the plane will intersect both halves of the cone, producing two separate unbounded curves. A property that the conic sections share is often presented as the following definition, a conic section is the locus of all points P whose distance to a fixed point F is a constant multiple of the distance from P to a fixed line L. For 0 < e <1 we obtain an ellipse, for e =1 a parabola, a circle is a limiting case and is not defined by a focus and directrix, in the plane. The eccentricity of a circle is defined to be zero and its focus is the center of the circle, an ellipse and a hyperbola each have two foci and distinct directrices for each of them
12.
Angular momentum
–
In physics, angular momentum is the rotational analog of linear momentum. It is an important quantity in physics because it is a conserved quantity – the angular momentum of a system remains constant unless acted on by an external torque. The definition of momentum for a point particle is a pseudovector r×p. This definition can be applied to each point in continua like solids or fluids, unlike momentum, angular momentum does depend on where the origin is chosen, since the particles position is measured from it. The angular momentum of an object can also be connected to the angular velocity ω of the object via the moment of inertia I. However, while ω always points in the direction of the rotation axis, Angular momentum is additive, the total angular momentum of a system is the vector sum of the angular momenta. For continua or fields one uses integration, torque can be defined as the rate of change of angular momentum, analogous to force. Applications include the gyrocompass, control moment gyroscope, inertial systems, reaction wheels, flying discs or Frisbees. In general, conservation does limit the motion of a system. In quantum mechanics, angular momentum is an operator with quantized eigenvalues, Angular momentum is subject to the Heisenberg uncertainty principle, meaning only one component can be measured with definite precision, the other two cannot. Also, the spin of elementary particles does not correspond to literal spinning motion, Angular momentum is a vector quantity that represents the product of a bodys rotational inertia and rotational velocity about a particular axis. Angular momentum can be considered an analog of linear momentum. Thus, where momentum is proportional to mass m and linear speed v, p = m v, angular momentum is proportional to moment of inertia I. Unlike mass, which only on amount of matter, moment of inertia is also dependent on the position of the axis of rotation. Unlike linear speed, which occurs in a line, angular speed occurs about a center of rotation. Therefore, strictly speaking, L should be referred to as the angular momentum relative to that center and this simple analysis can also apply to non-circular motion if only the component of the motion which is perpendicular to the radius vector is considered. In that case, L = r m v ⊥, where v ⊥ = v sin θ is the component of the motion. It is this definition, × to which the moment of momentum refers