1.
Trapezohedron
–
The n-gonal trapezohedron, antidipyramid, antibipyramid or deltohedron is the dual polyhedron of an n-gonal antiprism. Its 2n faces are congruent kites, the n-gon part of the name does not reference the faces here but arrangement of vertices around an axis of symmetry. The dual n-gonal antiprism has two actual n-gon faces, an n-gonal trapezohedron can be decomposed into two equal n-gonal pyramids and an n-gonal antiprism. These figures, sometimes called deltohedra, must not be confused with deltahedra, in texts describing the crystal habits of minerals, the word trapezohedron is often used for the polyhedron properly known as a deltoidal icositetrahedron. In the case of the dual of a triangular antiprism the kites are rhombi and they are cubes scaled in the direction of a body diagonal. Also they are the parallelepipeds with congruent rhombic faces, a special case of a rhombohedron is one in the which the rhombi which form the faces have angles of 60° and 120°. It can be decomposed into two regular tetrahedra and a regular octahedron. Since parallelepipeds can fill space, so can a combination of regular tetrahedra, a degenerate form, n =2, form a geometric tetrahedron with 6 vertices,8 edges, and 4 degenerate kite faces that are degenerated into triangles. Its dual is a form of antiprism, also a tetrahedron. The symmetry group of an n-gonal trapezohedron is Dnd of order 4n, except in the case of a cube, which has the symmetry group Od of order 48. The rotation group is Dn of order 2n, except in the case of a cube, which has the larger rotation group O of order 24, if the kites surrounding the two peaks are of different shapes, it can only have Cnv symmetry, order 2n. Crystal arrangements of atoms can repeat in space with trapezohedral cells, the pentagonal trapezohedron is the only polyhedron other than the Platonic solids commonly used as a die in roleplaying games such as Dungeons & Dragons. Having 10 sides, it can be used in repetition to generate any decimal-based uniform probability desired, two dice of different colors are typically used for the two digits to represent numbers from 00 to 99. Self-intersecting trapezohedron exist with a star polygon central figure, defined by kite faces connecting each polygon edge to two points. Diminished trapezohedron Rhombic dodecahedron Rhombic triacontahedron Bipyramid Conway polyhedron notation Anthony Pugh, California, University of California Press Berkeley. Chapter 4, Duals of the Archimedean polyhedra, prisma and antiprisms Weisstein, virtual Reality Polyhedra The Encyclopedia of Polyhedra VRML models <3> <4> <5> <6> <7> <8> <9> <10> Conway Notation for Polyhedra Try, dAn, where n=3,4,5. Example dA5 is a pentagonal trapezohedron
2.
Conway polyhedron notation
–
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation defined by Kepler, the basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example tC represents a cube, and taC, parsed as t, is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a cube is an octahedron. Applied in a series, these allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology, while exact geometry is not constrained, the seed polyhedra are the Platonic solids, represented by the first letter of their name, the prisms for n-gonal forms, antiprisms, cupolae and pyramids. Any polyhedron can serve as a seed, as long as the operations can be executed on it, for example regular-faced Johnson solids can be referenced as Jn, for n=1.92. In general, it is difficult to predict the appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the operation, aa=e, while a truncation after ambo produces bevel. There has been no general theory describing what polyhedra can be generated in by any set of operators, instead all results have been discovered empirically. Elements are given from the seed to the new forms, assuming seed is a polyhedron, An example image is given for each operation. The basic operations are sufficient to generate the reflective uniform polyhedra, some basic operations can be made as composites of others. Special forms The kis operator has a variation, kn, which only adds pyramids to n-sided faces, the truncate operator has a variation, tn, which only truncates order-n vertices. The operators are applied like functions from right to left, for example, a cuboctahedron is an ambo cube, i. e. t = aC, and a truncated cuboctahedron is t = t = taC. Chirality operator r – reflect – makes the image of the seed. Alternately an overline can be used for picking the other chiral form, the operations are visualized here on cube seed examples, drawn on the surface of the cube, with blue faces that cross original edges, and pink faces that center at original vertices. The first row generates the Archimedean solids and the row the Catalan solids. Comparing each new polyhedron with the cube, each operation can be visually understood, the truncated icosahedron, tI or zD, which is Goldberg polyhedron G, creates more polyhedra which are neither vertex nor face-transitive
3.
Kite (geometry)
–
In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. In contrast, a parallelogram also has two pairs of sides, but they are opposite to each other rather than adjacent. Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape, kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object. A kite, as defined above, may be convex or concave. A concave kite is called a dart or arrowhead, and is a type of pseudotriangle. If all four sides of a kite have the same length, if a kite is equiangular, meaning that all four of its angles are equal, then it must also be equilateral and thus a square. A kite with three equal 108° angles and one 36° angle forms the hull of the lute of Pythagoras. The kites that are cyclic quadrilaterals are exactly the ones formed from two congruent right triangles. That is, for these kites the two angles on opposite sides of the symmetry axis are each 90 degrees. These shapes are called right kites and they are in fact bicentric quadrilaterals, among all the bicentric quadrilaterals with a given two circle radii, the one with maximum area is a right kite. The tiling that it produces by its reflections is the deltoidal trihexagonal tiling, among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter is an equidiagonal kite with angles π/3, 5π/12, 5π/6, 5π/12. Its four vertices lie at the three corners and one of the midpoints of the Reuleaux triangle. In non-Euclidean geometry, a Lambert quadrilateral is a kite with three right angles. A quadrilateral is a if and only if any one of the following conditions is true. One diagonal is the bisector of the other diagonal. One diagonal is a line of symmetry, one diagonal bisects a pair of opposite angles. The kites are the quadrilaterals that have an axis of symmetry along one of their diagonals, if crossings are allowed, the list of quadrilaterals with axes of symmetry must be expanded to also include the antiparallelograms. Every kite is orthodiagonal, meaning that its two diagonals are at angles to each other
4.
Face configuration
–
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is one vertex type and therefore the vertex configuration fully defines the polyhedron. A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex, the notation a. b. c describes a vertex that has 3 faces around it, faces with a, b, and c sides. For example,3.5.3.5 indicates a vertex belonging to 4 faces, alternating triangles and this vertex configuration defines the vertex-transitive icosidodecahedron. The notation is cyclic and therefore is equivalent with different starting points, the order is important, so 3.3.5.5 is different from 3.5.3.5. Repeated elements can be collected as exponents so this example is represented as 2. It has variously called a vertex description, vertex type, vertex symbol, vertex arrangement, vertex pattern. It is also called a Cundy and Rollett symbol for its usage for the Archimedean solids in their 1952 book Mathematical Models, a vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. Different notations are used, sometimes with a comma and sometimes a period separator, the period operator is useful because it looks like a product and an exponent notation can be used. For example,3.5.3.5 is sometimes written as 2, the notation can also be considered an expansive form of the simple Schläfli symbol for regular polyhedra. The Schläfli notation means q p-gons around each vertex, so can be written as p. p. p. or pq. For example, an icosahedron is =3.3.3.3.3 or 35 and this notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron, the notation is ambiguous for chiral forms. For example, the cube has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration, the notation also applies for nonconvex regular faces, the star polygons. For example, a pentagram has the symbol, meaning it has 5 sides going around the centre twice, for example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The small stellated dodecahedron has the Schläfli symbol of which expands to a vertex configuration 5/2. 5/2. 5/2. 5/2. 5/2 or combined as 5. The great stellated dodecahedron, has a vertex figure and configuration or 3
5.
Point groups in three dimensions
–
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O, the group of all isometries that leave the origin fixed, or correspondingly, O itself is a subgroup of the Euclidean group E of all isometries. Symmetry groups of objects are isometry groups, accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded 3D object have one or more fixed points. We choose the origin as one of them, the rotation group of an object is equal to its full symmetry group if and only if the object is chiral. Finite Coxeter groups are a set of point groups generated purely by a set of reflectional mirrors passing through the same point. A rank n Coxeter group has n mirrors and is represented by a Coxeter–Dynkin diagram, Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups. SO is a subgroup of E+, which consists of direct isometries, i. e. isometries preserving orientation, it contains those that leave the origin fixed. O is the product of SO and the group generated by inversion. An example would be C4 for H and S4 for M, Thus M is obtained from H by inverting the isometries in H ∖ L. This is clarifying when categorizing isometry groups, see below, in 2D the cyclic group of k-fold rotations Ck is for every positive integer k a normal subgroup of O and SO. Accordingly, in 3D, for every axis the cyclic group of rotations about that axis is a normal subgroup of the group of all rotations about that axis. e. See also the similar overview including translations, when comparing the symmetry type of two objects, the origin is chosen for each separately, i. e. they need not have the same center. Moreover, two objects are considered to be of the symmetry type if their symmetry groups are conjugate subgroups of O. The conjugacy definition would allow a mirror image of the structure, but this is not needed. For example, if a symmetry group contains a 3-fold axis of rotation, there are many infinite isometry groups, for example, the cyclic group generated by a rotation by an irrational number of turns about an axis. We may create non-cyclical abelian groups by adding more rotations around the same axis, there are also non-abelian groups generated by rotations around different axes. They will be infinite unless the rotations are specially chosen, all the infinite groups mentioned so far are not closed as topological subgroups of O
6.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
7.
Pentagonal antiprism
–
In geometry, the pentagonal antiprism is the third in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It consists of two joined to each other by a ring of 10 triangles for a total of 12 faces. Hence, it is a non-regular dodecahedron, if the faces of the pentagonal antiprism are all regular, it is a semiregular polyhedron. The two pentagonal faces of either shape can be augmented with pyramids to form the icosahedron, the pentagonal antiprism occurs as a constituent element in some higher-dimensional polytopes. Two rings of 10 pentagonal antiprisms each bound the hypersurface of the 4-dimensional grand antiprism, if these antiprisms are augmented with pentagonal prism pyramids and linked with rings of 5 tetrahedra each, the 600-cell is obtained. The pentagonal antiprism can be truncated and alternated to form a snub antiprism, Weisstein, pentagonal Antiprism, Interactive Polyhedron Model Virtual Reality Polyhedra www. georgehart. com, The Encyclopedia of Polyhedra VRML model Conway Notation for Polyhedra Try, A5
8.
Isohedral figure
–
In geometry, a polytope of dimension 3 or higher is isohedral or face-transitive when all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, in other words, for any faces A and B, there must be a symmetry of the entire solid by rotations and reflections that maps A onto B. For this reason, convex polyhedra are the shapes that will make fair dice. They can be described by their face configuration, a polyhedron which is isohedral has a dual polyhedron that is vertex-transitive. The Catalan solids, the bipyramids and the trapezohedra are all isohedral and they are the duals of the isogonal Archimedean solids, prisms and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex, edge, a polyhedron which is isohedral and isogonal is said to be noble. A polyhedron is if it contains k faces within its symmetry fundamental domain. Similarly a k-isohedral tiling has k separate symmetry orbits, a monohedral polyhedron or monohedral tiling has congruent faces, as either direct or reflectively, which occur in one or more symmetry positions. An r-hedral polyhedra or tiling has r types of faces, a facet-transitive or isotopic figure is a n-dimensional polytopes or honeycomb, with its facets congruent and transitive. The dual of an isotope is an isogonal polytope, by definition, this isotopic property is common to the duals of the uniform polytopes. An isotopic 2-dimensional figure is isotoxal, an isotopic 3-dimensional figure is isohedral. An isotopic 4-dimensional figure is isochoric, edge-transitive Anisohedral tiling Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.367 Transitivity Olshevsky, George. Archived from the original on 4 February 2007
9.
Antiprism
–
In geometry, an n-sided antiprism is a polyhedron composed of two parallel copies of some particular n-sided polygon, connected by an alternating band of triangles. Antiprisms are a subclass of the prismatoids and are a type of snub polyhedra, Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals. In the case of a regular n-sided base, one considers the case where its copy is twisted by an angle 180°/n. Extra regularity is obtained when the line connecting the centers is perpendicular to the base planes. As faces, it has the two bases and, connecting those bases, 2n isosceles triangles. A uniform antiprism has, apart from the faces, 2n equilateral triangles as faces. As a class, the uniform antiprisms form a series of vertex-uniform polyhedra. For n =2 we have as degenerate case the regular tetrahedron as a digonal antiprism, the dual polyhedra of the antiprisms are the trapezohedra. Let a be the edge-length of a uniform antiprism, then the volume is V = n 4 cos 2 π2 n −1 sin 3 π2 n 12 sin 2 π n a 3 and the surface area is A = n 2 a 2. There are a set of truncated antiprisms, including a lower-symmetry form of the truncated octahedron. These can be alternated to create snub antiprisms, two of which are Johnson solids, and the snub triangular antiprism is a lower form of the icosahedron. The symmetry group contains inversion if and only if n is odd, uniform star antiprisms are named by their star polygon bases, and exist in prograde and retrograde solutions. Crossed forms have intersecting vertex figures, and are denoted by inverted fractions, p/ instead of p/q, in the retrograde forms but not in the prograde forms, the triangles joining the star bases intersect the axis of rotational symmetry. Some retrograde star antiprisms with regular star polygon bases cannot be constructed with equal edge lengths, star antiprism compounds also can be constructed where p and q have common factors, thus a 10/4 antiprism is the compound of two 5/2 star antiprisms. Prism Apeirogonal antiprism Grand antiprism – a four-dimensional polytope One World Trade Center, California, University of California Press Berkeley. Chapter 2, Archimedean polyhedra, prisma and antiprisms Weisstein, Eric W. Antiprism, archived from the original on 4 February 2007. Archived from the original on 4 February 2007, nonconvex Prisms and Antiprisms Paper models of prisms and antiprisms