1.
Quadrilateral
–
In Euclidean plane geometry, a quadrilateral is a polygon with four edges and four vertices or corners. Sometimes, the quadrangle is used, by analogy with triangle. The origin of the quadrilateral is the two Latin words quadri, a variant of four, and latus, meaning side. Quadrilaterals are simple or complex, also called crossed, simple quadrilaterals are either convex or concave. The interior angles of a simple quadrilateral ABCD add up to 360 degrees of arc and this is a special case of the n-gon interior angle sum formula × 180°. All non-self-crossing quadrilaterals tile the plane by repeated rotation around the midpoints of their edges, any quadrilateral that is not self-intersecting is a simple quadrilateral. In a convex quadrilateral, all angles are less than 180°. Irregular quadrilateral or trapezium, no sides are parallel, trapezium or trapezoid, at least one pair of opposite sides are parallel. Isosceles trapezium or isosceles trapezoid, one pair of sides are parallel. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, parallelogram, a quadrilateral with two pairs of parallel sides. Equivalent conditions are that opposite sides are of length, that opposite angles are equal. In other words, parallelograms include all rhombi and all rhomboids, rhombus or rhomb, all four sides are of equal length. An equivalent condition is that the diagonals bisect each other. Rhomboid, a parallelogram in which adjacent sides are of unequal lengths, not all references agree, some define a rhomboid as a parallelogram which is not a rhombus. Rectangle, all four angles are right angles, an equivalent condition is that the diagonals bisect each other and are equal in length. Square, all four sides are of length, and all four angles are right angles. An equivalent condition is that opposite sides are parallel, that the diagonals bisect each other. A quadrilateral is a if and only if it is both a rhombus and a rectangle
2.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
3.
Edge (geometry)
–
For edge in graph theory, see Edge In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a segment on the boundary. In a polyhedron or more generally a polytope, an edge is a segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. In graph theory, an edge is an abstract object connecting two vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its skeleton or edge-skeleton, conversely, the graphs that are skeletons of three-dimensional polyhedra can be characterized by Steinitzs theorem as being exactly the 3-vertex-connected planar graphs. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces, for example, a cube has 8 vertices and 6 faces, and hence 12 edges. In a polygon, two edges meet at each vertex, more generally, by Balinskis theorem, at least d edges meet at every vertex of a convex polytope. Similarly, in a polyhedron, exactly two faces meet at every edge, while in higher dimensional polytopes three or more two-dimensional faces meet at every edge. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, archived from the original on 4 February 2007
4.
Vertex (geometry)
–
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will also have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices, ears and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices
5.
Dihedral group
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
6.
Internal and external angles
–
In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple polygon, regardless of whether it is convex or non-convex, a polygon has exactly one internal angle per vertex. If every internal angle of a polygon is less than 180°. In contrast, an angle is an angle formed by one side of a simple polygon. The sum of the angle and the external angle on the same vertex is 180°. The sum of all the angles of a simple polygon is 180° where n is the number of sides. The formula can be proved using induction and starting with a triangle for which the angle sum is 180°. The sum of the angles of any simple convex or non-convex polygon is 360°. The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles, in other words, 360k° represents the sum of all the exterior angles. For example, for convex and concave polygons k =1, since the exterior angle sum is 360°
7.
Degree (angle)
–
A degree, usually denoted by °, is a measurement of a plane angle, defined so that a full rotation is 360 degrees. It is not an SI unit, as the SI unit of measure is the radian. Because a full rotation equals 2π radians, one degree is equivalent to π/180 radians, the original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the path over the course of the year. Some ancient calendars, such as the Persian calendar, used 360 days for a year, the use of a calendar with 360 days may be related to the use of sexagesimal numbers. The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle, a chord of length equal to the radius made a natural base quantity. One sixtieth of this, using their standard sexagesimal divisions, was a degree, Aristarchus of Samos and Hipparchus seem to have been among the first Greek scientists to exploit Babylonian astronomical knowledge and techniques systematically. Timocharis, Aristarchus, Aristillus, Archimedes, and Hipparchus were the first Greeks known to divide the circle in 360 degrees of 60 arc minutes, eratosthenes used a simpler sexagesimal system dividing a circle into 60 parts. Furthermore, it is divisible by every number from 1 to 10 except 7 and this property has many useful applications, such as dividing the world into 24 time zones, each of which is nominally 15° of longitude, to correlate with the established 24-hour day convention. Finally, it may be the case more than one of these factors has come into play. For many practical purposes, a degree is a small enough angle that whole degrees provide sufficient precision. When this is not the case, as in astronomy or for geographic coordinates, degree measurements may be written using decimal degrees, with the symbol behind the decimals. Alternatively, the sexagesimal unit subdivisions can be used. One degree is divided into 60 minutes, and one minute into 60 seconds, use of degrees-minutes-seconds is also called DMS notation. These subdivisions, also called the arcminute and arcsecond, are represented by a single and double prime. For example,40. 1875° = 40° 11′ 15″, or, using quotation mark characters, additional precision can be provided using decimals for the arcseconds component. The older system of thirds, fourths, etc. which continues the sexagesimal unit subdivision, was used by al-Kashi and other ancient astronomers, but is rarely used today
8.
Dual polygon
–
In geometry, polygons are associated into pairs called duals, where the vertices of one correspond to the edges of the other. The dual of a polygon is an isotoxal polygon. For example, the rectangle and rhombus are duals, in a cyclic polygon, longer sides correspond to larger exterior angles in the dual, and shorter sides to smaller angles. Further, congruent sides in the original polygon yields congruent angles in the dual, for example, the dual of a highly acute isosceles triangle is an obtuse isosceles triangle. In the Dorman Luke construction, each face of a polyhedron is the dual polygon of the corresponding vertex figure. As an example of the duality of polygons we compare properties of the cyclic. This duality is perhaps more clear when comparing an isosceles trapezoid to a kite. The simplest qualitative construction of a polygon is a rectification operation. New edges are formed between these new vertices and that is, the polygon generated by applying it twice is in general not similar to the original polygon. As with dual polyhedra, one can take a circle and perform polar reciprocation in it. Combinatorially, one can define a polygon as a set of vertices, a set of edges, then the dual polygon is obtained by simply switching the vertices and edges. Thus for the triangle with vertices and edges, the triangle has vertices, and edges, where B connects AB & BC. This is not a particularly fruitful avenue, as combinatorially, there is a family of polygons, geometric duality of polygons is more varied. Dual curve Dual polyhedron Self-dual polygon Dual Polygon Applet by Don Hatch
9.
Convex polygon
–
A convex polygon is a simple polygon in which no line segment between two points on the boundary ever goes outside the polygon. Equivalently, it is a polygon whose interior is a convex set. In a convex polygon, all angles are less than or equal to 180 degrees. A simple polygon which is not convex is called concave, the following properties of a simple polygon are all equivalent to convexity, Every internal angle is less than or equal to 180 degrees. Every point on line segment between two points inside or on the boundary of the polygon remains inside or on the boundary. The polygon is contained in a closed half-plane defined by each of its edges. For each edge, the points are all on the same side of the line that the edge defines. The angle at each vertex contains all vertices in its edges. The polygon is the hull of its edges. Additional properties of convex polygons include, The intersection of two convex polygons is a convex polygon, a convex polygon may br triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices. Hellys theorem, For every collection of at least three convex polygons, if the intersection of three of them is nonempty, then the whole collection has a nonempty intersection. Krein–Milman theorem, A convex polygon is the hull of its vertices. Thus it is defined by the set of its vertices. Hyperplane separation theorem, Any two convex polygons with no points in common have a separator line, if the polygons are closed and at least one of them is compact, then there are even two parallel separator lines. Inscribed triangle property, Of all triangles contained in a convex polygon, inscribing triangle property, every convex polygon with area A can be inscribed in a triangle of area at most equal to 2A. Equality holds for a parallelogram.5 × Area ≤ Area ≤2 × Area, the mean width of a convex polygon is equal to its perimeter divided by pi. So its width is the diameter of a circle with the perimeter as the polygon. Every polygon inscribed in a circle, if not self-intersecting, is convex, however, not every convex polygon can be inscribed in a circle
10.
Circumscribed circle
–
In geometry, the circumscribed circle or circumcircle of a polygon is a circle which passes through all the vertices of the polygon. The center of circle is called the circumcenter and its radius is called the circumradius. A polygon which has a circle is called a cyclic polygon. All regular simple polygons, all isosceles trapezoids, all triangles, a related notion is the one of a minimum bounding circle, which is the smallest circle that completely contains the polygon within it. All triangles are cyclic, i. e. every triangle has a circumscribed circle and this can be proven on the grounds that the general equation for a circle with center and radius r in the Cartesian coordinate system is 2 +2 = r 2. Since this equation has three parameters only three points coordinate pairs are required to determine the equation of a circle, since a triangle is defined by its three vertices, and exactly three points are required to determine a circle, every triangle can be circumscribed. The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors, the center is the point where the perpendicular bisectors intersect, and the radius is the length to any of the three vertices. This is because the circumcenter is equidistant from any pair of the triangles vertices, in coastal navigation, a triangles circumcircle is sometimes used as a way of obtaining a position line using a sextant when no compass is available. The horizontal angle between two landmarks defines the circumcircle upon which the observer lies, in the Euclidean plane, it is possible to give explicitly an equation of the circumcircle in terms of the Cartesian coordinates of the vertices of the inscribed triangle. Suppose that A = B = C = are the coordinates of points A, B, using the polarization identity, these equations reduce to the condition that the matrix has a nonzero kernel. Thus the circumcircle may alternatively be described as the locus of zeros of the determinant of this matrix, a similar approach allows one to deduce the equation of the circumsphere of a tetrahedron. A unit vector perpendicular to the containing the circle is given by n ^ = × | × |. An equation for the circumcircle in trilinear coordinates x, y, z is a/x + b/y + c/z =0, an equation for the circumcircle in barycentric coordinates x, y, z is a2/x + b2/y + c2/z =0. The isogonal conjugate of the circumcircle is the line at infinity, given in coordinates by ax + by + cz =0. Additionally, the circumcircle of a triangle embedded in d dimensions can be using a generalized method. Let A, B, and C be d-dimensional points, which form the vertices of a triangle and we start by transposing the system to place C at the origin, a = A − C, b = B − C. The circumcenter, p0, is given by p 0 = ×2 ∥ a × b ∥2 + C, the Cartesian coordinates of the circumcenter are U x =1 D U y =1 D with D =2. Without loss of generality this can be expressed in a form after translation of the vertex A to the origin of the Cartesian coordinate systems
11.
Equilateral polygon
–
In geometry, three or more than three straight lines make a polygon and an equilateral polygon is a polygon which has all sides of the same length. Except in the case, it need not be equiangular. If the number of sides is at least five, an equilateral polygon need not be a convex polygon, all regular polygons and isotoxal polygons are equilateral. An equilateral triangle is a triangle with 60° internal angles. An equilateral quadrilateral is called a rhombus, an isotoxal polygon described by an angle α and it includes the square as a special case. A convex equilateral pentagon can be described by two angles α and β, which determine the other angles. Concave equilateral pentagons exist, as do concave equilateral polygons with any number of sides. An equilateral polygon which is cyclic is a regular polygon, a tangential polygon is equilateral if and only if the alternate angles are equal. Thus if the number of n is odd, a tangential polygon is equilateral if. The principal diagonals of a hexagon each divide the hexagon into quadrilaterals, in any convex equilateral hexagon with common side a, there exists a principal diagonal d1 such that d 1 a ≤2 and a principal diagonal d2 such that d 2 a >3. Triambi are equilateral hexagons with trigonal symmetry, Equilateral triangle With interactive animation A Property of Equiangular Polygons, a discussion of Vivianis theorem at Cut-the-knot
12.
Isogonal figure
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C
13.
Isotoxal figure
–
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. The term isotoxal is derived from the Greek τοξον meaning arc, an isotoxal polygon is an equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons, in general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is a polygon with D2 symmetry. All regular polygons are isotoxal, having double the symmetry order. A regular 2n-gon is a polygon and can be marked with alternately colored vertices. An isotoxal polyhedron or tiling must be either isogonal or isohedral or both, regular polyhedra are isohedral, isogonal and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral, their duals are isohedral and isotoxal, not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. An isotoxal polyhedron has the dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids,8 formed by the Kepler–Poinsot polyhedra, cS1 maint, Multiple names, authors list Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Uniform polyhedra, Philosophical Transactions of the Royal Society of London, mathematical and Physical Sciences,246, 401–450, doi,10. 1098/rsta.1954.0003, ISSN 0080-4614, JSTOR91532, MR0062446
14.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
15.
Angle
–
In planar geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane, Angles are also formed by the intersection of two planes in Euclidean and other spaces. Angles formed by the intersection of two curves in a plane are defined as the angle determined by the tangent rays at the point of intersection. Similar statements hold in space, for example, the angle formed by two great circles on a sphere is the dihedral angle between the planes determined by the great circles. Angle is also used to designate the measure of an angle or of a rotation and this measure is the ratio of the length of a circular arc to its radius. In the case of an angle, the arc is centered at the vertex. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. The word angle comes from the Latin word angulus, meaning corner, cognate words are the Greek ἀγκύλος, meaning crooked, curved, both are connected with the Proto-Indo-European root *ank-, meaning to bend or bow. Euclid defines a plane angle as the inclination to each other, in a plane, according to Proclus an angle must be either a quality or a quantity, or a relationship. In mathematical expressions, it is common to use Greek letters to serve as variables standing for the size of some angle, lower case Roman letters are also used, as are upper case Roman letters in the context of polygons. See the figures in this article for examples, in geometric figures, angles may also be identified by the labels attached to the three points that define them. For example, the angle at vertex A enclosed by the rays AB, sometimes, where there is no risk of confusion, the angle may be referred to simply by its vertex. However, in geometrical situations it is obvious from context that the positive angle less than or equal to 180 degrees is meant. Otherwise, a convention may be adopted so that ∠BAC always refers to the angle from B to C. Angles smaller than an angle are called acute angles. An angle equal to 1/4 turn is called a right angle, two lines that form a right angle are said to be normal, orthogonal, or perpendicular. Angles larger than an angle and smaller than a straight angle are called obtuse angles. An angle equal to 1/2 turn is called a straight angle, Angles larger than a straight angle but less than 1 turn are called reflex angles
16.
Right angle
–
In geometry and trigonometry, a right angle is an angle that bisects the angle formed by two adjacent parts of a straight line. More precisely, if a ray is placed so that its endpoint is on a line, as a rotation, a right angle corresponds to a quarter turn. The presence of an angle in a triangle is the defining factor for right triangles. The term is a calque of Latin angulus rectus, here rectus means upright, in Unicode, the symbol for a right angle is U+221F ∟ Right angle. It should not be confused with the similarly shaped symbol U+231E ⌞ Bottom left corner, related symbols are U+22BE ⊾ Right angle with arc, U+299C ⦜ Right angle variant with square, and U+299D ⦝ Measured right angle with dot. The symbol for an angle, an arc, with a dot, is used in some European countries, including German-speaking countries and Poland. Right angles are fundamental in Euclids Elements and they are defined in Book 1, definition 10, which also defines perpendicular lines. Euclid uses right angles in definitions 11 and 12 to define acute angles, two angles are called complementary if their sum is a right angle. Book 1 Postulate 4 states that all angles are equal. Euclids commentator Proclus gave a proof of this using the previous postulates. Saccheri gave a proof as well but using a more explicit assumption, in Hilberts axiomatization of geometry this statement is given as a theorem, but only after much groundwork. A right angle may be expressed in different units, 1/4 turn, 90° π/2 radians 100 grad 8 points 6 hours Throughout history carpenters and masons have known a quick way to confirm if an angle is a true right angle. It is based on the most widely known Pythagorean triple and so called the Rule of 3-4-5 and this measurement can be made quickly and without technical instruments. The geometric law behind the measurement is the Pythagorean theorem, Thales theorem states that an angle inscribed in a semicircle is a right angle. Two application examples in which the angle and the Thales theorem are included. Cartesian coordinate system Orthogonality Perpendicular Rectangle Types of angles Wentworth, G. A, Euclid, commentary and trans. by T. L. Heath Elements Vol.1 Google Books
17.
Rectangle
–
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as a quadrilateral, since equiangular means that all of its angles are equal. It can also be defined as a parallelogram containing a right angle, a rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle, a rectangle with vertices ABCD would be denoted as ABCD. The word rectangle comes from the Latin rectangulus, which is a combination of rectus and angulus, a crossed rectangle is a crossed quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals. It is a case of an antiparallelogram, and its angles are not right angles. Other geometries, such as spherical, elliptic, and hyperbolic, have so-called rectangles with sides equal in length. Rectangles are involved in many tiling problems, such as tiling the plane by rectangles or tiling a rectangle by polygons, a convex quadrilateral with successive sides a, b, c, d whose area is 12. A rectangle is a case of a parallelogram in which each pair of adjacent sides is perpendicular. A parallelogram is a case of a trapezium in which both pairs of opposite sides are parallel and equal in length. A trapezium is a quadrilateral which has at least one pair of parallel opposite sides. A convex quadrilateral is Simple, The boundary does not cross itself, star-shaped, The whole interior is visible from a single point, without crossing any edge. De Villiers defines a more generally as any quadrilateral with axes of symmetry through each pair of opposite sides. This definition includes both right-angled rectangles and crossed rectangles, quadrilaterals with two axes of symmetry, each through a pair of opposite sides, belong to the larger class of quadrilaterals with at least one axis of symmetry through a pair of opposite sides. These quadrilaterals comprise isosceles trapezia and crossed isosceles trapezia, a rectangle is cyclic, all corners lie on a single circle. It is equiangular, all its corner angles are equal and it is isogonal or vertex-transitive, all corners lie within the same symmetry orbit. It has two lines of symmetry and rotational symmetry of order 2. The dual polygon of a rectangle is a rhombus, as shown in the table below, the figure formed by joining, in order, the midpoints of the sides of a rectangle is a rhombus and vice versa
18.
Rhombus
–
In Euclidean geometry, a rhombus is a simple quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length, every rhombus is a parallelogram and a kite. A rhombus with right angles is a square, the word rhombus comes from Greek ῥόμβος, meaning something that spins, which derives from the verb ῥέμβω, meaning to turn round and round. The word was used both by Euclid and Archimedes, who used the term solid rhombus for two right circular cones sharing a common base, the surface we refer to as rhombus today is a cross section of this solid rhombus through the apex of each of the two cones. This is a case of the superellipse, with exponent 1. Every rhombus has two diagonals connecting pairs of vertices, and two pairs of parallel sides. Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals and it follows that any rhombus has the following properties, Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular, that is, a rhombus is an orthodiagonal quadrilateral, the first property implies that every rhombus is a parallelogram. Thus denoting the common side as a and the diagonals as p and q, not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite, every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus. A rhombus is a tangential quadrilateral and that is, it has an inscribed circle that is tangent to all four sides. As for all parallelograms, the area K of a rhombus is the product of its base, the base is simply any side length a, K = a ⋅ h. The inradius, denoted by r, can be expressed in terms of the p and q as. The dual polygon of a rhombus is a rectangle, A rhombus has all sides equal, a rhombus has opposite angles equal, while a rectangle has opposite sides equal. A rhombus has a circle, while a rectangle has a circumcircle. A rhombus has an axis of symmetry through each pair of opposite vertex angles, the diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length. The figure formed by joining the midpoints of the sides of a rhombus is a rectangle, a rhombohedron is a three-dimensional figure like a cube, except that its six faces are rhombi instead of squares. The rhombic dodecahedron is a polyhedron with 12 congruent rhombi as its faces
19.
Parallelogram
–
In Euclidean geometry, a parallelogram is a simple quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length, by comparison, a quadrilateral with just one pair of parallel sides is a trapezoid in American English or a trapezium in British English. The three-dimensional counterpart of a parallelogram is a parallelepiped, rhomboid – A quadrilateral whose opposite sides are parallel and adjacent sides are unequal, and whose angles are not right angles Rectangle – A parallelogram with four angles of equal size. Rhombus – A parallelogram with four sides of equal length, square – A parallelogram with four sides of equal length and angles of equal size. A simple quadrilateral is a if and only if any one of the following statements is true. Two pairs of opposite angles are equal in measure, one pair of opposite sides are parallel and equal in length. Each diagonal divides the quadrilateral into two congruent triangles, the sum of the squares of the sides equals the sum of the squares of the diagonals. It has rotational symmetry of order 2, the sum of the distances from any interior point to the sides is independent of the location of the point. Thus all parallelograms have all the properties listed above, and conversely, if just one of statements is true in a simple quadrilateral. Opposite sides of a parallelogram are parallel and so will never intersect, the area of a parallelogram is twice the area of a triangle created by one of its diagonals. The area of a parallelogram is also equal to the magnitude of the cross product of two adjacent sides. Any line through the midpoint of a parallelogram bisects the area, any non-degenerate affine transformation takes a parallelogram to another parallelogram. A parallelogram has rotational symmetry of order 2, if it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong. If it has four lines of symmetry, it is a square. The perimeter of a parallelogram is 2 where a and b are the lengths of adjacent sides, unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area. The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area, the diagonals of a parallelogram divide it into four triangles of equal area. All of the formulas for general convex quadrilaterals apply to parallelograms
20.
Kite (geometry)
–
In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. In contrast, a parallelogram also has two pairs of sides, but they are opposite to each other rather than adjacent. Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape, kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object. A kite, as defined above, may be convex or concave. A concave kite is called a dart or arrowhead, and is a type of pseudotriangle. If all four sides of a kite have the same length, if a kite is equiangular, meaning that all four of its angles are equal, then it must also be equilateral and thus a square. A kite with three equal 108° angles and one 36° angle forms the hull of the lute of Pythagoras. The kites that are cyclic quadrilaterals are exactly the ones formed from two congruent right triangles. That is, for these kites the two angles on opposite sides of the symmetry axis are each 90 degrees. These shapes are called right kites and they are in fact bicentric quadrilaterals, among all the bicentric quadrilaterals with a given two circle radii, the one with maximum area is a right kite. The tiling that it produces by its reflections is the deltoidal trihexagonal tiling, among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter is an equidiagonal kite with angles π/3, 5π/12, 5π/6, 5π/12. Its four vertices lie at the three corners and one of the midpoints of the Reuleaux triangle. In non-Euclidean geometry, a Lambert quadrilateral is a kite with three right angles. A quadrilateral is a if and only if any one of the following conditions is true. One diagonal is the bisector of the other diagonal. One diagonal is a line of symmetry, one diagonal bisects a pair of opposite angles. The kites are the quadrilaterals that have an axis of symmetry along one of their diagonals, if crossings are allowed, the list of quadrilaterals with axes of symmetry must be expanded to also include the antiparallelograms. Every kite is orthodiagonal, meaning that its two diagonals are at angles to each other
21.
Trapezoid
–
The parallel sides are called the bases of the trapezoid and the other two sides are called the legs or the lateral sides. A scalene trapezoid is a trapezoid with no sides of equal measure, the first recorded use of the Greek word translated trapezoid was by Marinus Proclus in his Commentary on the first book of Euclids Elements. This article uses the term trapezoid in the sense that is current in the United States, in many other languages using a word derived from the Greek for this figure, the form closest to trapezium is used. A right trapezoid has two adjacent right angles, right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge, while an obtuse trapezoid has one acute, an acute trapezoid is also an isosceles trapezoid, if its sides have the same length, and the base angles have the same measure. An obtuse trapezoid with two pairs of sides is a parallelogram. A parallelogram has central 2-fold rotational symmetry, a Saccheri quadrilateral is similar to a trapezoid in the hyperbolic plane, with two adjacent right angles, while it is a rectangle in the Euclidean plane. A Lambert quadrilateral in the plane has 3 right angles. A tangential trapezoid is a trapezoid that has an incircle, there is some disagreement whether parallelograms, which have two pairs of parallel sides, should be regarded as trapezoids. Some define a trapezoid as a quadrilateral having one pair of parallel sides. Others define a trapezoid as a quadrilateral with at least one pair of parallel sides, the latter definition is consistent with its uses in higher mathematics such as calculus. The former definition would make such concepts as the trapezoidal approximation to a definite integral ill-defined and this article uses the inclusive definition and considers parallelograms as special cases of a trapezoid. This is also advocated in the taxonomy of quadrilaterals, under the inclusive definition, all parallelograms are trapezoids. Rectangles have mirror symmetry on mid-edges, rhombuses have mirror symmetry on vertices, while squares have mirror symmetry on both mid-edges and vertices. Four lengths a, c, b, d can constitute the sides of a non-parallelogram trapezoid with a and b parallel only when | d − c | < | b − a | < d + c. The quadrilateral is a parallelogram when d − c = b − a =0, the angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal. The diagonals cut each other in mutually the same ratio, the diagonals cut the quadrilateral into four triangles of which one opposite pair are similar. The diagonals cut the quadrilateral into four triangles of which one pair have equal areas
22.
Diagonal
–
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal, in matrix algebra, a diagonal of a square matrix is a set of entries extending from one corner to the farthest corner. There are also other, non-mathematical uses, diagonal pliers are wire-cutting pliers defined by the cutting edges of the jaws intersects the joint rivet at an angle or on a diagonal, hence the name. A diagonal lashing is a type of lashing used to bind spars or poles together applied so that the cross over the poles at an angle. In association football, the system of control is the method referees. As applied to a polygon, a diagonal is a line segment joining any two non-consecutive vertices, therefore, a quadrilateral has two diagonals, joining opposite pairs of vertices. For any convex polygon, all the diagonals are inside the polygon, in a convex polygon, if no three diagonals are concurrent at a single point, the number of regions that the diagonals divide the interior into is given by + =24. The number of regions is 1,4,11,25,50,91,154,246, in a polygon with n angles the number of diagonals is given by n ∗2. The number of intersections between the diagonals is given by, in the case of a square matrix, the main or principal diagonal is the diagonal line of entries running from the top-left corner to the bottom-right corner. For a matrix A with row index specified by i and column index specified by j, the off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero, a superdiagonal entry is one that is directly above and to the right of the main diagonal. Just as diagonal entries are those A i j with j = i and this plays an important part in geometry, for example, the fixed points of a mapping F from X to itself may be obtained by intersecting the graph of F with the diagonal. In geometric studies, the idea of intersecting the diagonal with itself is common, not directly and this is related at a deep level with the Euler characteristic and the zeros of vector fields. For example, the circle S1 has Betti numbers 1,1,0,0,0, a geometric way of expressing this is to look at the diagonal on the two-torus S1xS1 and observe that it can move off itself by the small motion to. Topics In Algebra, Waltham, Blaisdell Publishing Company, ISBN 978-1114541016 Nering, linear Algebra and Matrix Theory, New York, Wiley, LCCN76091646 Diagonals of a polygon with interactive animation Polygon diagonal from MathWorld. Diagonal of a matrix from MathWorld
23.
Bisection
–
In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a bisector. The most often considered types of bisectors are the segment bisector, in three-dimensional space, bisection is usually done by a plane, also called the bisector or bisecting plane. A line segment bisector passes through the midpoint of the segment, particularly important is the perpendicular bisector of a segment, which, according to its name, meets the segment at right angles. The perpendicular bisector of a segment also has the property that each of its points is equidistant from the segments endpoints, therefore, Voronoi diagram boundaries consist of segments of such lines or planes. In classical geometry, the bisection is a compass and straightedge construction, whose possibility depends on the ability to draw circles of equal radii. The segment is bisected by drawing intersecting circles of radius, whose centers are the endpoints of the segment. The line determined by the points of intersection of the two circles is the bisector of the segment, since it crosses the segment at its center. Brahmaguptas theorem states that if a cyclic quadrilateral is orthodiagonal, then the perpendicular to a side from the point of intersection of the diagonals bisects the opposite side. An angle bisector divides the angle into two angles with equal measures, an angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle, the interior or internal bisector of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles. The exterior or external bisector is the line divides the supplementary angle, formed by one side forming the original angle. To bisect an angle with straightedge and compass, one draws a circle whose center is the vertex, the circle meets the angle at two points, one on each leg. Using each of these points as a center, draw two circles of the same size, the intersection of the circles determines a line that is the angle bisector. The proof of the correctness of this construction is fairly intuitive and it is interesting to note that the trisection of an angle cannot be achieved with the compass and ruler alone. The internal and external bisectors of an angle are perpendicular, the interior angle bisectors of a triangle are concurrent in a point called the incenter of the triangle, as seen in the diagram at right. The bisectors of two angles and the bisector of the other interior angle are concurrent. Three intersection points, each of an angle bisector with the opposite extended side, are collinear. Three intersection points, two of them between an angle bisector and the opposite side, and the third between the other exterior angle bisector and the opposite side extended, are collinear
24.
Parallel (geometry)
–
In geometry, parallel lines are lines in a plane which do not meet, that is, two lines in a plane that do not intersect or touch each other at any point are said to be parallel. By extension, a line and a plane, or two planes, in three-dimensional Euclidean space that do not share a point are said to be parallel. However, two lines in space which do not meet must be in a common plane to be considered parallel. Parallel planes are planes in the same space that never meet. Parallel lines are the subject of Euclids parallel postulate, parallelism is primarily a property of affine geometries and Euclidean space is a special instance of this type of geometry. Some other spaces, such as space, have analogous properties that are sometimes referred to as parallelism. For example, A B ∥ C D indicates that line AB is parallel to line CD, in the Unicode character set, the parallel and not parallel signs have codepoints U+2225 and U+2226, respectively. In addition, U+22D5 represents the relation equal and parallel to, given parallel straight lines l and m in Euclidean space, the following properties are equivalent, Every point on line m is located at exactly the same distance from line l. Line m is in the plane as line l but does not intersect l. When lines m and l are both intersected by a straight line in the same plane, the corresponding angles of intersection with the transversal are congruent. Thus, the property is the one usually chosen as the defining property of parallel lines in Euclidean geometry. The other properties are consequences of Euclids Parallel Postulate. Another property that also involves measurement is that parallel to each other have the same gradient. The definition of parallel lines as a pair of lines in a plane which do not meet appears as Definition 23 in Book I of Euclids Elements. Alternative definitions were discussed by other Greeks, often as part of an attempt to prove the parallel postulate, proclus attributes a definition of parallel lines as equidistant lines to Posidonius and quotes Geminus in a similar vein. Simplicius also mentions Posidonius definition as well as its modification by the philosopher Aganis, at the end of the nineteenth century, in England, Euclids Elements was still the standard textbook in secondary schools. A major difference between these texts, both between themselves and between them and Euclid, is the treatment of parallel lines. These reform texts were not without their critics and one of them, Charles Dodgson, wrote a play, Euclid and His Modern Rivals, one of the early reform textbooks was James Maurice Wilsons Elementary Geometry of 1868
25.
Hypercube
–
In geometry, a hypercube is an n-dimensional analogue of a square and a cube. A unit hypercubes longest diagonal in n-dimensions is equal to n, an n-dimensional hypercube is also called an n-cube or an n-dimensional cube. The term measure polytope is also used, notably in the work of H. S. M. Coxeter, the hypercube is the special case of a hyperrectangle. A unit hypercube is a hypercube whose side has one unit. Often, the hypercube whose corners are the 2n points in Rn with coordinates equal to 0 or 1 is called the unit hypercube, a hypercube can be defined by increasing the numbers of dimensions of a shape,0 – A point is a hypercube of dimension zero. 1 – If one moves this point one unit length, it will sweep out a line segment,2 – If one moves this line segment its length in a perpendicular direction from itself, it sweeps out a 2-dimensional square. 3 – If one moves the square one unit length in the perpendicular to the plane it lies on. 4 – If one moves the cube one unit length into the fourth dimension and this can be generalized to any number of dimensions. The 1-skeleton of a hypercube is a hypercube graph, a unit hypercube of n dimensions is the convex hull of the points given by all sign permutations of the Cartesian coordinates. It has a length of 1 and an n-dimensional volume of 1. An n-dimensional hypercube is also regarded as the convex hull of all sign permutations of the coordinates. This form is chosen due to ease of writing out the coordinates. Its edge length is 2, and its volume is 2n. Every n-cube of n >0 is composed of elements, or n-cubes of a dimension, on the -dimensional surface on the parent hypercube. A side is any element of -dimension of the parent hypercube, a hypercube of dimension n has 2n sides. The number of vertices of a hypercube is 2 n, the number of m-dimensional hypercubes on the boundary of an n-cube is E m, n =2 n − m, where = n. m. and n. denotes the factorial of n. For example, the boundary of a 4-cube contains 8 cubes,24 squares,32 lines and 16 vertices and this identity can be proved by combinatorial arguments, each of the 2 n vertices defines a vertex in a m-dimensional boundary. There are ways of choosing which lines that defines the subspace that the boundary is in, but, each side is counted 2 m times since it has that many vertices, we need to divide with this number
26.
Cross-polytope
–
In geometry, a cross-polytope, orthoplex, hyperoctahedron, or cocube is a regular, convex polytope that exists in n-dimensions. A 2-orthoplex is a square, a 3-orthoplex is an octahedron. Its facets are simplexes of the dimension, while the cross-polytopes vertex figure is another cross-polytope from the previous dimension. The vertices of a cross-polytope are all the permutations of, the cross-polytope is the convex hull of its vertices. The n-dimensional cross-polytope can also be defined as the unit ball in the ℓ1-norm on Rn. In 1 dimension the cross-polytope is simply the line segment, in 2 dimensions it is a square with vertices, in 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. Higher-dimensional cross-polytopes are generalizations of these, the cross-polytope is the dual polytope of the hypercube. The 1-skeleton of a n-dimensional cross-polytope is a Turán graph T, the 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of six convex regular 4-polytopes and these 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. The cross polytope family is one of three regular polytope families, labeled by Coxeter as βn, the two being the hypercube family, labeled as γn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn, the n-dimensional cross-polytope has 2n vertices, and 2n facets all of which are n−1 simplices. The vertex figures are all n −1 cross-polytopes, the Schläfli symbol of the cross-polytope is. The dihedral angle of the n-dimensional cross-polytope is δ n = arccos and this gives, δ2 = arccos = 90°, δ3 = arccos =109. 47°, δ4 = arccos = 120°, δ5 = arccos =126. 87°. The volume of the n-dimensional cross-polytope is 2 n n. Petrie polygon projections map the points into a regular 2n-gon or lower order regular polygons. A second projection takes the 2-gon petrie polygon of the dimension, seen as a bipyramid, projected down the axis. The vertices of a cross polytope are all at equal distance from each other in the Manhattan distance. Kusners conjecture states that this set of 2d points is the largest possible equidistant set for this distance, Regular complex polytopes can be defined in complex Hilbert space called generalized orthoplexes, βpn =22. 2p, or. Real solutions exist with p=2, i. e. β2n = βn =22.22 =, for p>2, they exist in C n
27.
Truncation (geometry)
–
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Keplers names for the Archimedean solids, in general any polyhedron can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, there are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation, for example, the icosidodecahedron, represented as Schläfli symbols r or, and Coxeter-Dynkin diagram or has a uniform truncation, the truncated icosidodecahedron, represented as tr or t. In the Coxeter-Dynkin diagram, the effect of a truncation is to ring all the adjacent to the ringed node. A truncated n-sided polygon will have 2n sides, a regular polygon uniformly truncated will become another regular polygon, t is. A complete truncation, r, is another regular polygon in its dual position, a regular polygon can also be represented by its Coxeter-Dynkin diagram, and its uniform truncation, and its complete truncation. Star polygons can also be truncated, a truncated pentagram will look like a pentagon, but is actually a double-covered decagon with two sets of overlapping vertices and edges. A truncated great heptagram gives a tetradecagram and this sequence shows an example of the truncation of a cube, using four steps of a continuous truncating process between a full cube and a rectified cube. The final polyhedron is a cuboctahedron, the middle image is the uniform truncated cube. It is represented by a Schläfli symbol t, a bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. The truncated octahedron is a cube, 2t is an example. A complete bitruncation is called a birectification that reduces original faces to points, for polyhedra, this becomes the dual polyhedron. An octahedron is a birectification of the cube, = 2r is an example, another type of truncation is called cantellation, cuts edge and vertices, removing original edges and replacing them with rectangles. Higher dimensional polytopes have higher truncations, runcination cuts faces, edges, in 5-dimensions sterication cuts cells, faces, and edges. Edge-truncation is a beveling or chamfer for polyhedra, similar to cantellation but retains original vertices, in 4-polytopes edge-truncation replaces edges with elongated bipyramid cells. Alternation or partial truncation only removes some of the original vertices, a partial truncation or alternation - Half of the vertices and connecting edges are completely removed. The operation only applies to polytopes with even-sided faces, faces are reduced to half as many sides, and square faces degenerate into edges
28.
Octagon
–
In geometry, an octagon is an eight-sided polygon or 8-gon. A regular octagon has Schläfli symbol and can also be constructed as a truncated square, t. A truncated octagon, t is a hexadecagon, t, the sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°, the midpoint octagon of a reference octagon has its eight vertices at the midpoints of the sides of the reference octagon. A regular octagon is a figure with sides of the same length. It has eight lines of symmetry and rotational symmetry of order 8. A regular octagon is represented by the Schläfli symbol, the internal angle at each vertex of a regular octagon is 135°. The area of an octagon of side length a is given by A =2 cot π8 a 2 =2 a 2 ≃4.828 a 2. In terms of the circumradius R, the area is A =4 sin π4 R2 =22 R2 ≃2.828 R2. In terms of the r, the area is A =8 tan π8 r 2 =8 r 2 ≃3.314 r 2. These last two coefficients bracket the value of pi, the area of the unit circle. The area can also be expressed as A = S2 − a 2, where S is the span of the octagon, or the second-shortest diagonal, and a is the length of one of the sides, or bases. This is easily proven if one takes an octagon, draws a square around the outside and then takes the corner triangles and places them with right angles pointed inward, the edges of this square are each the length of the base. Given the length of a side a, the span S is S = a 2 + a + a 2 = a ≈2.414 a. The area is then as above, A =2 − a 2 =2 a 2 ≈4.828 a 2, expressed in terms of the span, the area is A =2 S2 ≈0.828 S2. Another simple formula for the area is A =2 a S, more often the span S is known, and the length of the sides, a, is to be determined, as when cutting a square piece of material into a regular octagon. From the above, a ≈ S /2.414, the two end lengths e on each side, as well as being e = a /2, may be calculated as e = /2. The circumradius of the octagon in terms of the side length a is R = a
29.
Alternation (geometry)
–
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices. Coxeter labels an alternation by a prefixed by an h, standing for hemi or half, because alternation reduce all polygon faces to half as many sides, it can only be applied for polytopes with all even-sided faces. An alternated square face becomes a digon, and being degenerate, is reduced to a single edge. More generally any vertex-uniform polyhedron or tiling with a configuration consisting of all even-numbered elements can be alternated. For example, the alternation a vertex figure with 2a. 2b. 2c is a.3. b.3. c.3 where the three is the number of elements in this vertex figure. A special case is square faces whose order divide in half into degenerate digons, a snub can be seen as an alternation of a truncated regular or truncated quasiregular polyhedron. In general a polyhedron can be snubbed if its truncation has only even-sided faces, all truncated rectified polyhedra can be snubbed, not just from regular polyhedra. The snub square antiprism is an example of a general snub and this alternation operation applies to higher-dimensional polytopes and honeycombs as well, but in general most of the results of this operation will not be uniform. The voids created by the vertices will not in general create uniform facets. Examples, Honeycombs An alternated cubic honeycomb is the tetrahedral-octahedral honeycomb, an alternated hexagonal prismatic honeycomb is the gyrated alternated cubic honeycomb. 4-polytope An alternated truncated 24-cell is the snub 24-cell, 4-honeycombs, An alternated truncated 24-cell honeycomb is the snub 24-cell honeycomb. A hypercube can always be alternated into a uniform demihypercube, cube → Tetrahedron → Tesseract → 16-cell → Penteract → demipenteract Hexeract → demihexeract. Coxeter also used the operator a, which contains both halves, so retains the original symmetry, for even-sided regular polyhedra, a represents a compound polyhedron with two opposite copies of h. For odd-sided, greater than 3, regular polyhedra a, becomes a star polyhedron, Norman Johnson extended the use of the altered operator a, b for blended, and c for converted, as, and respectively. The compound polyhedron, stellated octahedron can be represented by a, the star-polyhedron, small ditrigonal icosidodecahedron, can be represented by a, and. Here all the pentagons have been alternated into pentagrams, and triangles have been inserted to take up the free edges. A similar operation can truncate alternate vertices, rather than just removing them, below is a set of polyhedra that can be generated from the Catalan solids. These have two types of vertices which can be alternately truncated, truncating the higher order vertices and both vertex types produce these forms, Conway polyhedral notation Wythoff construction Coxeter, H. S. M
30.
Digon
–
In geometry, a digon is a polygon with two sides and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved, a regular digon has both angles equal and both sides equal and is represented by Schläfli symbol. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, the digon is the simplest abstract polytope of rank 2. A truncated digon, t is a square, an alternated digon, h is a monogon. A straight-sided digon is regular even though it is degenerate, because its two edges are the length and its two angles are equal. As such, the regular digon is a constructible polygon, some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean case. A digon as a face of a polyhedron is degenerate because it is a degenerate polygon, but sometimes it can have a useful topological existence in transforming polyhedra. A spherical lune is a digon whose two vertices are antipodal points on the sphere, a spherical polyhedron constructed from such digons is called a hosohedron. The digon is an important construct in the theory of networks such as graphs. Topological equivalences may be established using a process of reduction to a set of polygons. The digon represents a stage in the simplification where it can be removed and substituted by a line segment. The cyclic groups may be obtained as rotation symmetries of polygons, monogon Demihypercube Herbert Busemann, The geometry of geodesics. New York, Academic Press,1955 Coxeter, Regular Polytopes, Dover Publications Inc,1973 ISBN 0-486-61480-8 Weisstein, a. B. Ivanov, Digon, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 Media related to Digons at Wikimedia Commons
31.
Perimeter
–
A perimeter is a path that surrounds a two-dimensional shape. The term may be used either for the path or its length—it can be thought of as the length of the outline of a shape, the perimeter of a circle or ellipse is called its circumference. Calculating the perimeter has several practical applications, a calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel describes how far it will roll in one revolution, similarly, the amount of string wound around a spool is related to the spools perimeter. The perimeter is the distance around a shape, perimeters for more general shapes can be calculated, as any path, with ∫0 L d s, where L is the length of the path and d s is an infinitesimal line element. Both of these must be replaced with by algebraic forms in order to be practically calculated, the first mathematician known to have used this kind of reasoning is Archimedes, who approximated the perimeter of a circle by surrounding it with regular polygons. The perimeter of a polygon equals the sum of the lengths of its sides, in particular, the perimeter of a rectangle of width w and length ℓ equals 2 w +2 ℓ. An equilateral polygon is a polygon which has all sides of the same length, to calculate the perimeter of an equilateral polygon, one must multiply the common length of the sides by the number of sides. A regular polygon may be characterized by the number of its sides and by its circumradius, that is to say, the length of its sides can be calculated using trigonometry. If R is a regular polygons radius and n is the number of its sides, a splitter of a triangle is a cevian that divides the perimeter into two equal lengths, this common length being called the semiperimeter of the triangle. The three splitters of a triangle all intersect each other at the Nagel point of the triangle, a cleaver of a triangle is a segment from the midpoint of a side of a triangle to the opposite side such that the perimeter is divided into two equal lengths. The three cleavers of a triangle all intersect each other at the triangles Spieker center, the perimeter of a circle, often called the circumference, is proportional to its diameter and its radius. That is to say, there exists a constant number pi, π, such that if P is the perimeter and D its diameter then. In terms of the r of the circle, this formula becomes. To calculate a circles perimeter, knowledge of its radius or diameter, the problem is that π is not rational, nor is it algebraic. So, obtaining an approximation of π is important in the calculation. The computation of the digits of π is relevant to many fields, such as mathematical analysis, algorithmics, the perimeter and the area are two main measures of geometric figures. Confusing them is an error, as well as believing that the greater one of them is
32.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T
33.
Square (algebra)
–
In mathematics, a square is the result of multiplying a number by itself. The verb to square is used to denote this operation, squaring is the same as raising to the power 2, and is denoted by a superscript 2, for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the adjective which corresponds to squaring is quadratic. The square of an integer may also be called a number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, for instance, the square of the linear polynomial x +1 is the quadratic polynomial x2 + 2x +1. One of the important properties of squaring, for numbers as well as in other mathematical systems, is that. That is, the function satisfies the identity x2 =2. This can also be expressed by saying that the function is an even function. The squaring function preserves the order of numbers, larger numbers have larger squares. In other words, squaring is a function on the interval. Hence, zero is its global minimum, the only cases where the square x2 of a number is less than x occur when 0 < x <1, that is, when x belongs to an open interval. This implies that the square of an integer is never less than the original number, every positive real number is the square of exactly two numbers, one of which is strictly positive and the other of which is strictly negative. Zero is the square of one number, itself. For this reason, it is possible to define the square root function, no square root can be taken of a negative number within the system of real numbers, because squares of all real numbers are non-negative. There are several uses of the squaring function in geometry. The name of the squaring function shows its importance in the definition of the area, the area depends quadratically on the size, the area of a shape n times larger is n2 times greater. The squaring function is related to distance through the Pythagorean theorem and its generalization, Euclidean distance is not a smooth function, the three-dimensional graph of distance from a fixed point forms a cone, with a non-smooth point at the tip of the cone. However, the square of the distance, which has a paraboloid as its graph, is a smooth, the dot product of a Euclidean vector with itself is equal to the square of its length, v⋅v = v2
34.
Incircle and excircles of a triangle
–
In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle, it touches the three sides. The center of the incircle is a center called the triangles incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides, every triangle has three distinct excircles, each tangent to one of the triangles sides. The center of the incircle, called the incenter, can be found as the intersection of the three angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle, the center of this excircle is called the excenter relative to the vertex A, or the excenter of A. Because the internal bisector of an angle is perpendicular to its external bisector, polygons with more than three sides do not all have an incircle tangent to all sides, those that do are called tangential polygons. See also Tangent lines to circles, suppose △ A B C has an incircle with radius r and center I. The distance from vertex A to the incenter I is, d = c sin cos = b sin cos The trilinear coordinates for a point in the triangle is the ratio of distances to the triangle sides. Because the Incenter is the distance of all sides the trilinear coordinates for the incenter are 1,1,1. The barycentric coordinates for a point in a triangle give weights such that the point is the average of the triangle vertex positions. The Cartesian coordinates of the incenter are an average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter—i. e. Using the barycentric coordinates given above, normalized to sum to unity—as weights. If the three vertices are located at, and, and the sides opposite these vertices have corresponding lengths a, b, additionally, I A ⋅ I B ⋅ I C =4 R r 2, where R and r are the triangles circumradius and inradius respectively. The collection of triangle centers may be given the structure of a group under multiplication of trilinear coordinates, in this group. Then the incircle has the radius r = x y z x + y + z, the product of the incircle radius r and the circumcircle radius R of a triangle with sides a, b, and c is r R = a b c 2. Some relations among the sides, incircle radius, and circumcircle radius are, a b + b c + c a = s 2 + r, any line through a triangle that splits both the triangles area and its perimeter in half goes through the triangles incenter. There are either one, two, or three of these for any given triangle, the distance from any vertex to the incircle tangency on either adjacent side is half the sum of the vertexs adjacent sides minus half the opposite side. Thus for example for vertex B and adjacent tangencies TA and TC, the incircle radius is no greater than one-ninth the sum of the altitudes
35.
Isoperimetric inequality
–
In mathematics, the isoperimetric inequality is a geometric inequality involving the surface area of a set and its volume. The equality holds when S is a ball in R n, on a plane, i. e. when n =2, the isoperimetric inequality relates square of the circumference of a closed curve and the area of a plane region it encloses. Isoperimetric literally means having the same perimeter, the isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length. The closely related Didos problem asks for a region of the area bounded by a straight line. It is named after Dido, the founder and first queen of Carthage. The solution to the problem is given by a circle and was known already in Ancient Greece. However, the first mathematically rigorous proof of this fact was obtained only in the 19th century, since then, many other proofs have been found. The isoperimetric problem has been extended in multiple ways, for example, to curves on surfaces, perhaps the most familiar physical manifestation of the 3-dimensional isoperimetric inequality is the shape of a drop of water. Namely, a drop will assume a symmetric round shape. Since the amount of water in a drop is fixed, surface forces the drop into a shape which minimizes the surface area of the drop. The classical isoperimetric problem dates back to antiquity, the problem can be stated as follows, Among all closed curves in the plane of fixed perimeter, which curve maximizes the area of its enclosed region. This question can be shown to be equivalent to the problem, Among all closed curves in the plane enclosing a fixed area. German astronomer and astrologer Johannes Kepler invoked the principle in discussing the morphology of the solar system. Although the circle appears to be a solution to the problem. The first progress toward the solution was made by Swiss geometer Jakob Steiner in 1838, Steiner showed that if a solution existed, then it must be the circle. Steiners proof was completed later by other mathematicians. It can further be shown that any closed curve which is not fully symmetrical can be tilted so that it encloses more area. The one shape that is convex and symmetrical is the circle, although this, in itself
36.
Square root of 2
–
The square root of 2, or the th power of 2, written in mathematics as √2 or 2 1⁄2, is the positive algebraic number that, when multiplied by itself, gives the number 2. Technically, it is called the square root of 2. Geometrically the square root of 2 is the length of a diagonal across a square sides of one unit of length. It was probably the first number known to be irrational, the rational approximation of the square root of two,665, 857/470,832, derived from the fourth step in the Babylonian algorithm starting with a0 =1, is too large by approx. 1. 6×10−12, its square is 2. 0000000000045… The rational approximation 99/70 is frequently used, despite having a denominator of only 70, it differs from the correct value by less than 1/10,000. The numerical value for the root of two, truncated to 65 decimal places, is,1. 41421356237309504880168872420969807856967187537694807317667973799….41421296 ¯. That is,1 +13 +13 ×4 −13 ×4 ×34 =577408 =1.4142156862745098039 ¯. This approximation is the seventh in a sequence of increasingly accurate approximations based on the sequence of Pell numbers, despite having a smaller denominator, it is only slightly less accurate than the Babylonian approximation. Pythagoreans discovered that the diagonal of a square is incommensurable with its side, or in modern language, little is known with certainty about the time or circumstances of this discovery, but the name of Hippasus of Metapontum is often mentioned. For a while, the Pythagoreans treated as a secret the discovery that the square root of two is irrational, and, according to legend, Hippasus was murdered for divulging it. The square root of two is occasionally called Pythagoras number or Pythagoras constant, for example by Conway & Guy, there are a number of algorithms for approximating √2, which in expressions as a ratio of integers or as a decimal can only be approximated. The most common algorithm for this, one used as a basis in many computers and calculators, is the Babylonian method of computing square roots, which is one of many methods of computing square roots. It goes as follows, First, pick a guess, a0 >0, then, using that guess, iterate through the following recursive computation, a n +1 = a n +2 a n 2 = a n 2 +1 a n. The more iterations through the algorithm, the approximation of the square root of 2 is achieved. Each iteration approximately doubles the number of correct digits, starting with a0 =1 the next approximations are 3/2 =1.5 17/12 =1.416. The value of √2 was calculated to 137,438,953,444 decimal places by Yasumasa Kanadas team in 1997, in February 2006 the record for the calculation of √2 was eclipsed with the use of a home computer. Shigeru Kondo calculated 1 trillion decimal places in 2010, for a development of this record, see the table below. Among mathematical constants with computationally challenging decimal expansions, only π has been calculated more precisely, such computations aim to check empirically whether such numbers are normal
37.
Irrational number
–
In mathematics, the irrational numbers are all the real numbers, which are not rational numbers, the latter being the numbers constructed from ratios of integers. Irrational numbers may also be dealt with via non-terminating continued fractions, for example, the decimal representation of the number π starts with 3.14159265358979, but no finite number of digits can represent π exactly, nor does it repeat. Mathematicians do not generally take terminating or repeating to be the definition of the concept of rational number, as a consequence of Cantors proof that the real numbers are uncountable and the rationals countable, it follows that almost all real numbers are irrational. The first proof of the existence of numbers is usually attributed to a Pythagorean. The then-current Pythagorean method would have claimed that there must be sufficiently small. However, Hippasus, in the 5th century BC, was able to deduce that there was in no common unit of measure. His reasoning is as follows, Start with a right triangle with side lengths of integers a, b. The ratio of the hypotenuse to a leg is represented by c, b, assume a, b, and c are in the smallest possible terms. By the Pythagorean theorem, c2 = a2+b2 = b2+b2 = 2b2, since c2 = 2b2, c2 is divisible by 2, and therefore even. Since c2 is even, c must be even, since c is even, dividing c by 2 yields an integer. Squaring both sides of c = 2y yields c2 =2, or c2 = 4y2, substituting 4y2 for c2 in the first equation gives us 4y2= 2b2. Dividing by 2 yields 2y2 = b2, since y is an integer, and 2y2 = b2, b2 is divisible by 2, and therefore even. Since b2 is even, b must be even and we have just show that both b and c must be even. Hence they have a factor of 2. However this contradicts the assumption that they have no common factors and this contradiction proves that c and b cannot both be integers, and thus the existence of a number that cannot be expressed as a ratio of two integers. Greek mathematicians termed this ratio of incommensurable magnitudes alogos, or inexpressible. ”Another legend states that Hippasus was merely exiled for this revelation, the discovery of incommensurable ratios was indicative of another problem facing the Greeks, the relation of the discrete to the continuous. Brought into light by Zeno of Elea, who questioned the conception that quantities are discrete and composed of a number of units of a given size. ”However Zeno found that in fact “ in general are not discrete collections of units. That in fact, these divisions of quantity must necessarily be infinite, for example, consider a line segment, this segment can be split in half, that half split in half, the half of the half in half, and so on
38.
Square tiling
–
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of, meaning it has 4 squares around every vertex, the internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees. It is one of three regular tilings of the plane, the other two are the triangular tiling and the hexagonal tiling. There are 9 distinct uniform colorings of a square tiling, naming the colors by indices on the 4 squares around a vertex,1111,1112,1112,1122,1123,1123,1212,1213,1234. Cases have simple reflection symmetry, and glide reflection symmetry, three can be seen in the same symmetry domain as reduced colorings, 1112i from 1213, 1123i from 1234, and 1112ii reduced from 1123ii. This tiling is related as a part of sequence of regular polyhedra and tilings, extending into the hyperbolic plane. Like the uniform there are eight uniform tilings that can be based from the regular square tiling. Drawing the tiles colored as red on the faces, yellow at the original vertices. However treating faces identically, there are only three distinct forms, square tiling, truncated square tiling, snub square tiling. Other quadrilateral tilings can be made with topologically equivalent to the square tiling, isohedral tilings have identical faces and vertex-transitivity, there are 17 variations, with 6 identified as triangles that do not connect edge-to-edge, or as quadrilateral with two colinear edges. Symmetry given assumes all faces are the same color, the square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 4 other circles in the packing, the packing density is π/4=78. 54% coverage. There are 4 uniform colorings of the circle packings, there are 3 regular complex apeirogons, sharing the vertices of the square tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices, Regular apeirogons pr are contrained by, 1/p + 2/q + 1/r =1. Edges have p vertices, and vertex figures are r-gonal, checkerboard List of regular polytopes List of uniform tilings Square lattice Tilings of regular polygons Coxeter, H. S. M. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 p.296, Table II, Regular honeycombs Klitzing, 2D Euclidean tilings o4o4x - squat - O1. The Geometrical Foundation of Natural Structure, A Source Book of Design, p36 Grünbaum, Branko, and Shephard, G. C. CS1 maint, Multiple names, authors list John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Weisstein, Eric W. Square Grid
39.
Euclidean tilings by convex regular polygons
–
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi and this means that, for every pair of flags, there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons, There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three regular tessellations. Vertex-transitivity means that for pair of vertices there is a symmetry operation mapping the first vertex to the second. Note that there are two mirror forms of 34.6 tiling, only one of which is shown in the following table. All other regular and semiregular tilings are achiral, though these yield the same set of tilings in the plane, in other spaces there are Archimedean tilings which are not uniform. Such periodic tilings may be classified by the number of orbits of vertices, edges and tiles. If there are k orbits of vertices, a tiling is known as k -uniform or k -isogonal, if there are t orbits of tiles, as t -isohedral, if there are e orbits of edges, as e -isotoxal. K-uniform tilings with the vertex figures can be further identified by their wallpaper group symmetry. 1-uniform tilings include 3 regular tilings, and 8 semiregular ones, There are 20 2-uniform tilings,61 3-uniform tilings,151 4-uniform tilings,332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the m of distinct vertex figures. For edge-to-edge Euclidean tilings, the angles of the polygons meeting at a vertex must add to 360 degrees. A regular n -gon has internal angle 180 degrees, only eleven of these can occur in a uniform tiling of regular polygons, given in previous sections. In particular, if three polygons meet at a vertex and one has an odd number of sides, the two polygons must be the same. If they are not, they would have to alternate around the first polygon, vertex types are listed for each. If two tilings share the two vertex types, they are given subscripts 1,2. There are 61 3-uniform tilings of the Euclidean plane,39 are 3-Archimedean with 3 distinct vertex types, while 22 have 2 identical vertex types in different symmetry orbits. Chavey There are 151 4-uniform tilings of the Euclidean plane, Brian Galebachs search reproduced Krotenheerdts list of 33 4-uniform tilings with 4 distinct vertex types, as well as finding 85 of them with 3 vertex types, and 33 with 2 vertex types
40.
Equilateral triangle
–
In geometry, an equilateral triangle is a triangle in which all three sides are equal. In the familiar Euclidean geometry, equilateral triangles are also equiangular and they are regular polygons, and can therefore also be referred to as regular triangles. Thus these are properties that are unique to equilateral triangles, the three medians have equal lengths. The three angle bisectors have equal lengths, every triangle center of an equilateral triangle coincides with its centroid, which implies that the equilateral triangle is the only triangle with no Euler line connecting some of the centers. For some pairs of triangle centers, the fact that they coincide is enough to ensure that the triangle is equilateral, in particular, A triangle is equilateral if any two of the circumcenter, incenter, centroid, or orthocenter coincide. It is also equilateral if its circumcenter coincides with the Nagel point, for any triangle, the three medians partition the triangle into six smaller triangles. A triangle is equilateral if and only if any three of the triangles have either the same perimeter or the same inradius. A triangle is equilateral if and only if the circumcenters of any three of the triangles have the same distance from the centroid. Morleys trisector theorem states that, in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, a version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral. That is, PA, PB, and PC satisfy the inequality that any two of them sum to at least as great as the third. By Eulers inequality, the triangle has the smallest ratio R/r of the circumradius to the inradius of any triangle, specifically. The triangle of largest area of all those inscribed in a circle is equilateral. The ratio of the area of the incircle to the area of an equilateral triangle, the ratio of the area to the square of the perimeter of an equilateral triangle,1123, is larger than that for any other triangle. If a segment splits an equilateral triangle into two regions with equal perimeters and with areas A1 and A2, then 79 ≤ A1 A2 ≤97, in no other triangle is there a point for which this ratio is as small as 2. For any point P in the plane, with p, q, and t from the vertices A, B. For any point P on the circle of an equilateral triangle, with distances p, q. There are numerous triangle inequalities that hold with equality if and only if the triangle is equilateral, an equilateral triangle is the most symmetrical triangle, having 3 lines of reflection and rotational symmetry of order 3 about its center. Its symmetry group is the group of order 6 D3
41.
Hexagon
–
In geometry, a hexagon is a six sided polygon or 6-gon. The total of the angles of any hexagon is 720°. A regular hexagon has Schläfli symbol and can also be constructed as an equilateral triangle, t. A regular hexagon is defined as a hexagon that is both equilateral and equiangular and it is bicentric, meaning that it is both cyclic and tangential. The common length of the sides equals the radius of the circumscribed circle, all internal angles are 120 degrees. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries, the longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane, the cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials. The Voronoi diagram of a triangular lattice is the honeycomb tessellation of hexagons. It is not usually considered a triambus, although it is equilateral, the maximal diameter, D is twice the maximal radius or circumradius, R, which equals the side length, t. The minimal diameter or the diameter of the circle, d, is twice the minimal radius or inradius. If a regular hexagon has successive vertices A, B, C, D, E, F, the regular hexagon has Dih6 symmetry, order 12. There are 3 dihedral subgroups, Dih3, Dih2, and Dih1, and 4 cyclic subgroups, Z6, Z3, Z2 and these symmetries express 9 distinct symmetries of a regular hexagon. John Conway labels these by a letter and group order, r12 is full symmetry, and a1 is no symmetry. These two forms are duals of each other and have half the order of the regular hexagon. The i4 forms are regular hexagons flattened or stretched along one symmetry direction and it can be seen as an elongated rhombus, while d2 and p2 can be seen as horizontally and vertically elongated kites. G2 hexagons, with sides parallel are also called hexagonal parallelogons. Each subgroup symmetry allows one or more degrees of freedom for irregular forms, only the g6 subgroup has no degrees of freedom but can seen as directed edges. Hexagons of symmetry g2, i4, and r12, as parallelogons can tessellate the Euclidean plane by translation, other hexagon shapes can tile the plane with different orientations
42.
Reflection symmetry
–
Reflection symmetry, line symmetry, mirror symmetry, mirror-image symmetry, is symmetry with respect to reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry, in 2D there is a line/axis of symmetry, in 3D a plane of symmetry. An object or figure which is indistinguishable from its image is called mirror symmetric. The set of operations that preserve a property of the object form a group. Two objects are symmetric to each other with respect to a group of operations if one is obtained from the other by some of the operations. Another way to think about the function is that if the shape were to be folded in half over the axis. Thus a square has four axes of symmetry, because there are four different ways to fold it and have the edges all match, a circle has infinitely many axes of symmetry. Triangles with reflection symmetry are isosceles, quadrilaterals with reflection symmetry are kites, deltoids, rhombuses, and isosceles trapezoids. All even-sided polygons have two simple reflective forms, one with lines of reflections through vertices, and one through edges, for an arbitrary shape, the axiality of the shape measures how close it is to being bilaterally symmetric. It equals 1 for shapes with reflection symmetry, and between 2/3 and 1 for any convex shape, for each line or plane of reflection, the symmetry group is isomorphic with Cs, one of the three types of order two, hence algebraically C2. The fundamental domain is a half-plane or half-space, in certain contexts there is rotational as well as reflection symmetry. Then mirror-image symmetry is equivalent to inversion symmetry, in contexts in modern physics the term parity or P-symmetry is used for both. For more general types of reflection there are more general types of reflection symmetry. For example, with respect to a non-isometric affine involution with respect to circle inversion, most animals are bilaterally symmetric, likely because this supports forward movement and streamlining. Mirror symmetry is used in architecture, as in the facade of Santa Maria Novella. It is also found in the design of ancient structures such as Stonehenge, Symmetry was a core element in some styles of architecture, such as Palladianism. Patterns in nature Point reflection symmetry Stewart, Ian, weidenfeld & Nicolson. is potty Weyl, Hermann. Mapping with symmetry - source in Delphi Reflection Symmetry Examples from Math Is Fun
43.
Rotational symmetry
–
Rotational symmetry, also known as radial symmetry in biology, is the property a shape has when it looks the same after some rotation by a partial turn. An objects degree of symmetry is the number of distinct orientations in which it looks the same. Formally the rotational symmetry is symmetry with respect to some or all rotations in m-dimensional Euclidean space, rotations are direct isometries, i. e. isometries preserving orientation. With the modified notion of symmetry for vector fields the symmetry group can also be E+, for symmetry with respect to rotations about a point we can take that point as origin. These rotations form the orthogonal group SO, the group of m×m orthogonal matrices with determinant 1. For m =3 this is the rotation group SO, for chiral objects it is the same as the full symmetry group. Laws of physics are SO-invariant if they do not distinguish different directions in space, because of Noethers theorem, rotational symmetry of a physical system is equivalent to the angular momentum conservation law. Note that 1-fold symmetry is no symmetry, the notation for n-fold symmetry is Cn or simply n. The actual symmetry group is specified by the point or axis of symmetry, for each point or axis of symmetry, the abstract group type is cyclic group of order n, Zn. The fundamental domain is a sector of 360°/n, if there is e. g. rotational symmetry with respect to an angle of 100°, then also with respect to one of 20°, the greatest common divisor of 100° and 360°. A typical 3D object with rotational symmetry but no mirror symmetry is a propeller and this is the rotation group of a regular prism, or regular bipyramid. 4×3-fold and 3×2-fold axes, the rotation group T of order 12 of a regular tetrahedron, the group is isomorphic to alternating group A4. 3×4-fold, 4×3-fold, and 6×2-fold axes, the rotation group O of order 24 of a cube, the group is isomorphic to symmetric group S4. 6×5-fold, 10×3-fold, and 15×2-fold axes, the rotation group I of order 60 of a dodecahedron, the group is isomorphic to alternating group A5. The group contains 10 versions of D3 and 6 versions of D5, in the case of the Platonic solids, the 2-fold axes are through the midpoints of opposite edges, the number of them is half the number of edges. Rotational symmetry with respect to any angle is, in two dimensions, circular symmetry, the fundamental domain is a half-line. In three dimensions we can distinguish cylindrical symmetry and spherical symmetry and that is, no dependence on the angle using cylindrical coordinates and no dependence on either angle using spherical coordinates. The fundamental domain is a half-plane through the axis, and a radial half-line, axisymmetric or axisymmetrical are adjectives which refer to an object having cylindrical symmetry, or axisymmetry
44.
Symmetry group
–
In abstract algebra, the symmetry group of an object is the group of all transformations under which the object is invariant with composition as the group operation. For a space with a metric, it is a subgroup of the group of the space concerned. If not stated otherwise, this article considers symmetry groups in Euclidean geometry, the objects may be geometric figures, images, and patterns, such as a wallpaper pattern. The definition can be more precise by specifying what is meant by image or pattern. For symmetry of objects, one may also want to take their physical composition into account. The group of isometries of space induces an action on objects in it. The symmetry group is also called full symmetry group in order to emphasize that it includes the orientation-reversing isometries under which the figure is invariant. The subgroup of orientation-preserving isometries that leave the figure invariant is called its symmetry group. The proper symmetry group of an object is equal to its symmetry group if. The proper symmetry group is then a subgroup of the orthogonal group SO. A discrete symmetry group is a group such that for every point of the space the set of images of the point under the isometries in the symmetry group is a discrete set. There are also continuous symmetry groups, which contain rotations of arbitrarily small angles or translations of arbitrarily small distances, the group of all symmetries of a sphere O is an example of this, and in general such continuous symmetry groups are studied as Lie groups. With a categorization of subgroups of the Euclidean group corresponds a categorization of symmetry groups, for example, two 3D figures have mirror symmetry, but with respect to different mirror planes. Two 3D figures have 3-fold rotational symmetry, but with respect to different axes, two 2D patterns have translational symmetry, each in one direction, the two translation vectors have the same length but a different direction. When considering isometry groups, one may restrict oneself to those where for all points the set of images under the isometries is topologically closed. This includes all discrete isometry groups and also involved in continuous symmetries. A figure with this group is non-drawable and up to arbitrarily fine detail homogeneous. The group generated by all translations, this group cannot be the group of a pattern, it would be homogeneous
45.
Cartesian coordinates
–
Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair. The coordinates can also be defined as the positions of the projections of the point onto the two axis, expressed as signed distances from the origin. One can use the principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes. In general, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n and these coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes. The invention of Cartesian coordinates in the 17th century by René Descartes revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes can be described by Cartesian equations, algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, a familiar example is the concept of the graph of a function. Cartesian coordinates are also tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering. They are the most common system used in computer graphics, computer-aided geometric design. Nicole Oresme, a French cleric and friend of the Dauphin of the 14th Century, used similar to Cartesian coordinates well before the time of Descartes. The adjective Cartesian refers to the French mathematician and philosopher René Descartes who published this idea in 1637 and it was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. Both authors used a single axis in their treatments and have a length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes La Géométrie was translated into Latin in 1649 by Frans van Schooten and these commentators introduced several concepts while trying to clarify the ideas contained in Descartes work. Many other coordinate systems have developed since Descartes, such as the polar coordinates for the plane. The development of the Cartesian coordinate system would play a role in the development of the Calculus by Isaac Newton. The two-coordinate description of the plane was later generalized into the concept of vector spaces. Choosing a Cartesian coordinate system for a one-dimensional space – that is, for a straight line—involves choosing a point O of the line, a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative, we say that the line is oriented from the negative half towards the positive half