In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is 1729 = Ta(2) = 13 + 123 = 93 + 103, also known as the Hardy-Ramanujan number.
Srinivasa Ramanujan developed the idea of taxicab numbers.
Srinivasa Ramanujan
(22 December 1887 – 26 April 1920) was an Indian mathematician. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable.
1913 passport photograph
Ramanujan's birthplace on 18 Alahiri Street, Erode, now in Tamil Nadu
Ramanujan's home on Sarangapani Sannidhi Street, Kumbakonam
K Ananda Rau seated with Ramanujan