Theory of conjoint measurement
The theory of conjoint measurement is a general, formal theory of continuous quantity. It was independently discovered by the French economist Gérard Debreu (1960) and by the American mathematical psychologist R. Duncan Luce and statistician John Tukey.
Figure One: Graphical representation of the single cancellation axiom. It can be seen that a > b because (a, x) > (b, x), (a, y) > (b, y) and (a, z) > (b, z).
Figure Two: A Luce–Tukey instance of double cancellation, in which the consequent inequality (broken line arrow) does not contradict the direction of both antecedent inequalities (solid line arrows), so supporting the axiom.
Figure Three: An instance of triple cancellation.
John Wilder Tukey was an American mathematician and statistician, best known for the development of the fast Fourier Transform (FFT) algorithm and box plot. The Tukey range test, the Tukey lambda distribution, the Tukey test of additivity, and the Teichmüller–Tukey lemma all bear his name. He is also credited with coining the term bit and the first published use of the word software.
John Tukey