Wythoff symbol
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. A Wythoff symbol consists of a vertical bar, it represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 4 2 with Oh symmetry, 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D 2 h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space. In three dimensions, Wythoff's construction begins by choosing a generator point on the triangle. If the distance of this point from each of the sides is non-zero, the point must be chosen to be an equal distance from each edge.
A perpendicular line is dropped between the generator point and every face that it does not lie on. The three numbers in Wythoff's symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, which are π / p, π / q and π / r radians respectively; the triangle is represented with the same numbers, written. The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following: p | q r indicates that the generator lies on the corner p, p q | r indicates that the generator lies on the edge between p and q, p q r | indicates that the generator lies in the interior of the triangle. In this notation the mirrors are labeled by the reflection-order of the opposite vertex; the p, q, r values are listed before the bar. The one impossible symbol | p q r implies the generator point is on all mirrors, only possible if the triangle is degenerate, reduced to a point; this unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, but odd-numbered reflected images are ignored.
The resulting figure has rotational symmetry only. The generator point can either be off each mirror, activated or not; this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. A node is circled. There are seven generator points with each set of p, q, r: There are three special cases: p q | – This is a mixture of p q r | and p q s |, containing only the faces shared by both. | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isn't Wythoff-constructible. There are 4 symmetry classes of reflection on the sphere, three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are listed. Point groups: dihedral symmetry, p = 2, 3, 4 … tetrahedral symmetry octahedral symmetry icosahedral symmetry Euclidean groups: *442 symmetry: 45°-45°-90° triangle *632 symmetry: 30°-60°-90° triangle *333 symmetry: 60°-60°-60° triangleHyperbolic groups: *732 symmetry *832 symmetry *433 symmetry *443 symmetry *444 symmetry *542 symmetry *642 symmetry...
The above symmetry groups only include the integer solutions on the sphere. The list of Schwarz triangles includes rational numbers, determine the full set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a fundamental domain, colored by and odd reflections. Selected tilings created by the Wythoff con
Dual polyhedron
In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a symmetric class. Thus, the regular polyhedra – the Platonic solids and Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual; the dual of an isogonal polyhedron, having equivalent vertices, is one, isohedral, having equivalent faces. The dual of an isotoxal polyhedron is isotoxal. Duality is related to reciprocity or polarity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.
There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality; the duality of polyhedra is defined in terms of polar reciprocation about a concentric sphere. Here, each vertex is associated with a face plane so that the ray from the center to the vertex is perpendicular to the plane, the product of the distances from the center to each is equal to the square of the radius. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2; the vertices of the dual are the poles reciprocal to the face planes of the original, the faces of the dual lie in the polars reciprocal to the vertices of the original. Any two adjacent vertices define an edge, these will reciprocate to two adjacent faces which intersect to define an edge of the dual; this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, r 1 and r 2 the distances from its centre to the pole and its polar, then: r 1.
R 2 = r 0 2 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, as in the Dorman Luke construction described below. However, it is possible to reciprocate a polyhedron about any sphere, the resulting form of the dual will depend on the size and position of the sphere; the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point, this is taken to be the centroid. Failing that, a circumscribed sphere, inscribed sphere, or midsphere is used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required'plane at infinity'; some theorists prefer to say that there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, in a manner suitable for making models.
The concept of duality here is related to the duality in projective geometry, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra, but for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, Grünbaum argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron. Any convex polyhedron can be distorted into a canonical form, in which a unit midsphere exists tangent to every edge, such that the average position of the points of tangency is the center of the sphere; this form is unique up to congruences. If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points and so must be canonical, it is the canonical dual, the two together form a canonical dual pair.
When a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of polyhedra are abstractly dual; the vertices and edges of a convex polyhedron form a graph, embedded on a topological sphere, the surface of the polyhedron. The same graph can be projected to form
John Horton Conway
John Horton Conway is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has contributed to many branches of recreational mathematics, notably the invention of the cellular automaton called the Game of Life. Conway spent the first half of his long career at the University of Cambridge, in England, the second half at Princeton University in New Jersey, where he now holds the title Professor Emeritus. Conway was born in the son of Cyril Horton Conway and Agnes Boyce, he became interested in mathematics at a early age. By the age of eleven his ambition was to become a mathematician. After leaving sixth form, Conway entered Caius College, Cambridge to study mathematics. Conway, a "terribly introverted adolescent" in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person: an "extrovert", he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport.
Having solved the open problem posed by Davenport on writing numbers as the sums of fifth powers, Conway began to become interested in infinite ordinals. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos, where he became an avid backgammon player, spending hours playing the game in the common room, he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University. Conway is known for the invention of the Game of Life, one of the early examples of a cellular automaton, his initial experiments in that field were done with pen and paper, long before personal computers existed. Since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, articles, it is a staple of recreational mathematics.
There is an extensive wiki devoted to cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, both for its theoretical interest and as a practical exercise in programming and data display. At times Conway has said he hates the Game of Life–largely because it has come to overshadow some of the other deeper and more important things he has done; the game did help launch a new branch of mathematics, the field of cellular automata. The Game of Life is now known to be Turing complete. Conway's career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner; when Gardner featured Conway's Game of Life in his Mathematical Games column in October 1970, it became the most read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, over the years Gardner had written about recreational aspects of Conway's work. For instance, he discussed Conway's game of Sprouts and his angel and devil problem.
In the September 1976 column he reviewed Conway's book On Numbers and Games and introduced the public to Conway's surreal numbers. Conferences called Gathering 4 Gardner are held every two years to celebrate the legacy of Martin Gardner, Conway himself has been a featured speaker at these events, discussing various aspects of recreational mathematics. Conway is known for his contributions to combinatorial game theory, a theory of partisan games; this he developed with Elwyn Berlekamp and Richard Guy, with them co-authored the book Winning Ways for your Mathematical Plays. He wrote the book On Numbers and Games which lays out the mathematical foundations of CGT, he is one of the inventors of sprouts, as well as philosopher's football. He developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, Conway's soldiers, he came up with the angel problem, solved in 2006. He invented a new system of numbers, the surreal numbers, which are related to certain games and have been the subject of a mathematical novel by Donald Knuth.
He invented a nomenclature for exceedingly large numbers, the Conway chained arrow notation. Much of this is discussed in the 0th part of ONAG. In the mid-1960s with Michael Guy, son of Richard Guy, Conway established that there are sixty-four convex uniform polychora excluding two infinite sets of prismatic forms, they discovered the grand antiprism in the only non-Wythoffian uniform polychoron. Conway has suggested a system of notation dedicated to describing polyhedra called Conway polyhedron notation. In the theory of tessellations, he devised the Conway criterion which describes rules for deciding if a prototile will tile the plane, he investigated lattices in higher dimensions, was the first to determine the symmetry group of the Leech lattice. In knot theory, Conway formulated a new variation of the Alexander polynomial and produced a new invariant now called the Conway polynomial. After lying dormant for more than a decade, this concept became central to work in the 1980s on the novel knot polynomials.
Conway further developed tangle theory and invented a system of notation for tabulating knots, nowadays known as Conway notation, while correcting a number of errors in the 19th century knot tables and extending them to include all but four of the non-alternating primes with 11 crossings. See Topology Proceedings 7 118, he was the primary author of the ATLAS of Finite Groups giving prope
Uniform polyhedron
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows. Uniform polyhedra may be quasi-regular or semi-regular; the faces and vertices need not be convex, so many of the uniform polyhedra are star polyhedra. There are two infinite classes of uniform polyhedra together with 75 others. Infinite classes prisms antiprisms Convex exceptional 5 Platonic solids – regular convex polyhedra 13 Archimedean solids – 2 quasiregular and 11 semiregular convex polyhedra Star exceptional 4 Kepler–Poinsot polyhedra – regular nonconvex polyhedra 53 uniform star polyhedra – 5 quasiregular and 48 semiregularhence 5 + 13 + 4 + 53 = 75. There are many degenerate uniform polyhedra with pairs of edges that coincide, including one found by John Skilling called the great disnub dirhombidodecahedron. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, are classified in parallel with their dual polyhedron; the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid.
The concept of uniform polyhedron is a special case of the concept of uniform polytope, which applies to shapes in higher-dimensional space. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, they define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property. By a polygon they implicitly mean a polygon in 3-dimensional Euclidean space. There are some generalizations of the concept of a uniform polyhedron. If the connectedness assumption is dropped we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate we get the so-called degenerate uniform polyhedra; these require a more general definition of polyhedra. Grunbaum gave a rather complicated definition of a polyhedron, while McMullen & Schulte gave a simpler and more general definition of a polyhedron: in their terminology, a polyhedron is a 2-dimensional abstract polytope with a non-degenerate 3-dimensional realization.
Here an abstract polytope is a poset of its "faces" satisfying various condition, a realization is a function from its vertices to some space, the realization is called non-degenerate if any two distinct faces of the abstract polytope have distinct realizations. Some of the ways they can be degenerate are as follows: Hidden faces; some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are not counted as uniform polyhedra. Degenerate compounds; some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. Double covers. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron. There double covers have doubled faces and vertices, they are not counted as uniform polyhedra. Double faces. There are several polyhedra with doubled faces produced by Wythoff's construction.
Most authors do not remove them as part of the construction. Double edges. Skilling's figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra; the Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Theaetetus, Timaeus of Locri and Euclid. The Etruscans discovered the regular dodecahedron before 500 BC; the cuboctahedron was known by Plato. Archimedes discovered all of the 13 Archimedean solids, his original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra. Piero della Francesca rediscovered the five truncation of the Platonic solids: truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, truncated icosahedron. Luca Pacioli republished Francesca's work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, as well as identified the infinite families of uniform prisms and antiprisms.
Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two. The set of four were named by Arthur Cayley. Of the remaining 53, Edmund Hess discovered two, Albert Badoureau discovered 36 more, Pitsch independently discovered 18, of which 3 had not been discovered. Together these gave 41 polyhedra; the geometer H. S. M. Coxeter did not publish. M. S. Longuet-Higgins and H. C. Longuet-Higgins independently discovered eleven of these. Lesavre and Mercier rediscovered five of them in 1947. Coxeter, Longuet-Higgins & Miller published the list of uniform polyhedra. Sopov (19
Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, C is denoted △ A B C. In Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. In other words, there is only one plane that contains that triangle, every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; this article is about triangles in Euclidean geometry, in particular, the Euclidean plane, except where otherwise noted. Triangles can be classified according to the lengths of their sides: An equilateral triangle has all sides the same length. An equilateral triangle is a regular polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length. An isosceles triangle has two angles of the same measure, namely the angles opposite to the two sides of the same length; some mathematicians define an isosceles triangle to have two equal sides, whereas others define an isosceles triangle as one with at least two equal sides.
The latter definition would make all equilateral triangles isosceles triangles. The 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths. Equivalently, it has all angles of different measure. Hatch marks called tick marks, are used in diagrams of triangles and other geometric figures to identify sides of equal lengths. A side can be marked with a pattern of short line segments in the form of tally marks. In a triangle, the pattern is no more than 3 ticks. An equilateral triangle has the same pattern on all 3 sides, an isosceles triangle has the same pattern on just 2 sides, a scalene triangle has different patterns on all sides since no sides are equal. Patterns of 1, 2, or 3 concentric arcs inside the angles are used to indicate equal angles. An equilateral triangle has the same pattern on all 3 angles, an isosceles triangle has the same pattern on just 2 angles, a scalene triangle has different patterns on all angles since no angles are equal.
Triangles can be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°; the side opposite to the right angle is the longest side of the triangle. The other two sides are called the catheti of the triangle. Right triangles obey the Pythagorean theorem: the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the hypotenuse. Special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 + 42 = 52. In this situation, 3, 4, 5 are a Pythagorean triple; the other one is an isosceles triangle. Triangles that do not have an angle measuring 90° are called oblique triangles. A triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle.
If c is the length of the longest side a2 + b2 > c2, where a and b are the lengths of the other sides. A triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side a2 + b2 < c2, where a and b are the lengths of the other sides. A triangle with an interior angle of 180° is degenerate. A right degenerate triangle has collinear vertices. A triangle that has two angles with the same measure has two sides with the same length, therefore it is an isosceles triangle, it follows that in a triangle where all angles have the same measure, all three sides have the same length, such a triangle is therefore equilateral. Triangles are assumed to be two-dimensional plane figures. In rigorous treatments, a triangle is therefore called a 2-simplex. Elementary facts about triangles were presented by Euclid in books 1–4 of his Elements, around 300 BC; the sum of the measures of the interior angles of a triangle in Euclidean space is always 180 degrees.
This fact is equivalent to Euclid's parallel postulate. This allows determination of the measure of the third angle of any triangle given the measure of two angles. An exterior angle of a triangle is an angle, a linear pair to an interior angle; the measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it. The sum of the measures of the three exterior angles of any triangle is 360 degrees. Two triangles are said to be similar if every angle of one triangle has the same measure as the corresponding angle in the other triangle; the corresponding sides of similar triangles have lengths that are in the same proportion, this property is sufficient to establish similarity. Some basic theorems about similar triangles are: If and only if one pair of internal angles of two triangles have the sam
Wallpaper group
A wallpaper group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur in architecture and decorative art in textiles and tiles as well as wallpaper. A proof that there were only 17 distinct groups of possible patterns was first carried out by Evgraf Fedorov in 1891 and derived independently by George Pólya in 1924; the proof that the list of wallpaper groups was complete only came after the much harder case of space groups had been done. The seventeen possible wallpaper groups are listed below in § The seventeen groups. Wallpaper groups are two-dimensional symmetry groups, intermediate in complexity between the simpler frieze groups and the three-dimensional space groups. Wallpaper groups categorize patterns by their symmetries. Subtle differences may place similar patterns in different groups, while patterns that are different in style, scale or orientation may belong to the same group. Consider the following examples: Examples A and B have the same wallpaper group.
Example C has a different wallpaper group, called p4g or 4*2. The fact that A and B have the same wallpaper group means that they have the same symmetries, regardless of details of the designs, whereas C has a different set of symmetries despite any superficial similarities. A symmetry of a pattern is, loosely speaking, a way of transforming the pattern so that it looks the same after the transformation. For example, translational symmetry is present when the pattern can be translated some finite distance and appear unchanged. Think of shifting a set of vertical stripes horizontally by one stripe; the pattern is unchanged. Speaking, a true symmetry only exists in patterns that repeat and continue indefinitely. A set of only, five stripes does not have translational symmetry—when shifted, the stripe on one end "disappears" and a new stripe is "added" at the other end. In practice, classification is applied to finite patterns, small imperfections may be ignored. Sometimes two categorizations are meaningful, one based on shapes alone and one including colors.
When colors are ignored there may be more symmetry. In black and white there are 17 wallpaper groups; the types of transformations that are relevant here are called Euclidean plane isometries. For example: If we shift example B one unit to the right, so that each square covers the square, adjacent to it the resulting pattern is the same as the pattern we started with; this type of symmetry is called a translation. Examples A and C are similar. If we turn example B clockwise by 90°, around the centre of one of the squares, again we obtain the same pattern; this is called a rotation. Examples A and C have 90° rotations, although it requires a little more ingenuity to find the correct centre of rotation for C. We can flip example B across a horizontal axis that runs across the middle of the image; this is called a reflection. Example B has reflections across a vertical axis, across two diagonal axes; the same can be said for A. However, example C is different, it only has reflections in vertical directions, not across diagonal axes.
If we flip across a diagonal line, we do not get the same pattern back. This is part of the reason that the wallpaper group of A and B is different from the wallpaper group of C. Another transformation is "Glide", a combination of reflection and translation parallel to the line of reflection. Mathematically, a wallpaper group or plane crystallographic group is a type of topologically discrete group of isometries of the Euclidean plane that contains two linearly independent translations. Two such isometry groups are of the same type if they are the same up to an affine transformation of the plane, thus e.g. a translation of the plane does not affect the wallpaper group. The same applies for a change of angle between translation vectors, provided that it does not add or remove any symmetry. Unlike in the three-dimensional case, we can equivalently restrict the affine transformations to those that preserve orientation, it follows from the Bieberbach theorem that all wallpaper groups are different as abstract groups.
2D patterns with double translational symmetry can be categorized according to their symmetry group type. Isometries of the Euclidean plane fall into four categories. Translations, denoted by Tv, where v is a vector in R2; this has the effect of shifting the plane applying displacement vector v. Rotations, denoted by Rc,θ, where c is a point in the plane, θ is the angle of rotation. Reflections, or mirror isometries, denoted by FL, where L is a line in R2.. This has the effect of reflecting the plane in the line L, called the reflection axis or the associated mirror. Glide reflections, denoted by GL,d, where L is a line in R2 and d is a distance; this is a combination of a reflection in the line L and a translation along L by a distance d. The condition
Triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees; the triangular tiling has Schläfli symbol of. Conway calls it a deltille, named from the triangular shape of the Greek letter delta; the triangular tiling can be called a kishextille by a kis operation that adds a center point and triangles to replace the faces of a hextille. It is one of three regular tilings of the plane; the other two are the hexagonal tiling. There are 9 distinct uniform colorings of a triangular tiling. Three of them can be derived from others by repeating colors: 111212 and 111112 from 121213 by combining 1 and 3, while 111213 is reduced from 121314. There is one class of Archimedean colorings, 111112, not 1-uniform, containing alternate rows of triangles where every third is colored; the example shown is 2-uniform, but there are infinitely many such Archimedean colorings that can be created by arbitrary horizontal shifts of the rows.
The vertex arrangement of the triangular tiling is called an A2 lattice. It is the 2-dimensional case of a simplectic honeycomb; the A*2 lattice can be constructed by the union of all three A2 lattices, equivalent to the A2 lattice. + + = dual of = The vertices of the triangular tiling are the centers of the densest possible circle packing. Every circle is in contact with 6 other circles in the packing; the packing density is π⁄√12 or 90.69%. The voronoi cell of a triangular tiling is a hexagon, so the voronoi tessellation, the hexagonal tiling, has a direct correspondence to the circle packings. Triangular tilings can be made with the equivalent topology as the regular tiling. With identical faces and vertex-transitivity, there are 5 variations. Symmetry given assumes all faces are the same color; the planar tilings are related to polyhedra. Putting fewer triangles on a vertex leaves a gap and allows it to be folded into a pyramid; these can be expanded to Platonic solids: five and three triangles on a vertex define an icosahedron and tetrahedron respectively.
This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbols, continuing into the hyperbolic plane. It is topologically related as a part of sequence of Catalan solids with face configuration Vn.6.6, continuing into the hyperbolic plane. Like the uniform polyhedra there are eight uniform tilings that can be based from the regular hexagonal tiling. Drawing the tiles colored as red on the original faces, yellow at the original vertices, blue along the original edges, there are 8 forms, 7 which are topologically distinct. There are 4 regular complex apeirogons. Regular complex apeirogons have edges, where edges can contain 2 or more vertices. Regular apeirogons pr are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, vertex figures are r-gonal; the first is made of 2-edges, next two are triangular edges, the last has overlapping hexagonal edges. There are three Laves tilings made of single type of triangles: Triangular tiling honeycomb Simplectic honeycomb Tilings of regular polygons List of uniform tilings Isogrid Coxeter, H.
S. M. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs Grünbaum, Branko. C.. Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. CS1 maint: Multiple names: authors list Williams, Robert; the Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. P35 John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Weisstein, Eric W. "Triangular Grid". MathWorld. Weisstein, Eric W. "Regular tessellation". MathWorld. Weisstein, Eric W. "Uniform tessellation". MathWorld. Klitzing, Richard. "2D Euclidean tilings x3o6o - trat - O2"