1.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
2.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
3.
Uniform star polyhedron
–
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting, each polyhedron can contain either star polygon faces, star polygon vertex figures or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra,5 quasiregular ones, there are also two infinite sets of uniform star prisms and uniform star antiprisms. The nonconvex forms are constructed from Schwarz triangles, all the uniform polyhedra are listed below by their symmetry groups and subgrouped by their vertex arrangements. Regular polyhedra are labeled by their Schläfli symbol, other nonregular uniform polyhedra are listed with their vertex configuration or their Uniform polyhedron index U. Note, For nonconvex forms below an additional descriptor Nonuniform is used when the convex hull vertex arrangement has same topology as one of these, for example an nonuniform cantellated form may have rectangles created in place of the edges rather than squares. There is one form, the tetrahemihexahedron which has tetrahedral symmetry. There are two Schwarz triangles that generate unique nonconvex uniform polyhedra, one triangle, and one general triangle. The general triangle generates the octahemioctahedron which is given further on with its octahedral symmetry. There are 8 convex forms, and 10 nonconvex forms with octahedral symmetry, there are four Schwarz triangles that generate nonconvex forms, two right triangles, and, and two general triangles. There are 8 convex forms and 46 nonconvex forms with icosahedral symmetry, some of the nonconvex snub forms have reflective vertex symmetry. Coxeter identified a number of star polyhedra by the Wythoff construction method. It is counted as a uniform polyhedron rather than a uniform polyhedron because of its double edges. Star polygon List of uniform polyhedra List of uniform polyhedra by Schwarz triangle Coxeter, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, a proof of the completeness on the list of elementary homogeneous polyhedra, Ukrainskiui Geometricheskiui Sbornik, 139–156, MR0326550 Skilling, J. The complete set of polyhedra, Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences,278, 111–135, doi,10. 1098/rsta.1975.0022, ISSN 0080-4614, JSTOR74475, MR0365333 HarEl, zvi Har’El, Kaleido software, Images, dual images Mäder, R. E. Messer, Peter W. Closed-Form Expressions for Uniform Polyhedra and Their Duals
4.
Snub dodecadodecahedron
–
In geometry, the snub dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U40. It is given a Schläfli symbol sr, as a great dodecahedron.7964421. Taking the odd permutations of the coordinates with an odd number of plus signs gives another form. The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron and it is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces
5.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra
6.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
7.
Face (geometry)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces
8.
Vertex-transitive
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C
9.
Transitive group action
–
In mathematics, an action of a group is a way of interpreting the elements of the group as acting on some space in a way that preserves the structure of that space. Common examples of spaces that groups act on are sets, vector spaces, actions of groups on vector spaces are called representations of the group. Some groups can be interpreted as acting on spaces in a canonical way, more generally, symmetry groups such as the homeomorphism group of a topological space or the general linear group of a vector space, as well as their subgroups, also admit canonical actions. A common way of specifying non-canonical actions is to describe a homomorphism φ from a group G to the group of symmetries of a set X. The action of an element g ∈ G on a point x ∈ X is assumed to be identical to the action of its image φ ∈ Sym on the point x. The homomorphism φ is also called the action of G. Thus, if G is a group and X is a set, if X has additional structure, then φ is only called an action if for each g ∈ G, the permutation φ preserves the structure of X. The abstraction provided by group actions is a one, because it allows geometrical ideas to be applied to more abstract objects. Many objects in mathematics have natural group actions defined on them, in particular, groups can act on other groups, or even on themselves. Because of this generality, the theory of group actions contains wide-reaching theorems, such as the orbit stabilizer theorem, the group G is said to act on X. The set X is called a G-set. In complete analogy, one can define a group action of G on X as an operation X × G → X mapping to x. g. =. h for all g, h in G and all x in X, for a left action h acts first and is followed by g, while for a right action g acts first and is followed by h. Because of the formula −1 = h−1g−1, one can construct an action from a right action by composing with the inverse operation of the group. Also, an action of a group G on X is the same thing as a left action of its opposite group Gop on X. It is thus sufficient to only consider left actions without any loss of generality. The trivial action of any group G on any set X is defined by g. x = x for all g in G and all x in X, that is, every group element induces the identity permutation on X. In every group G, left multiplication is an action of G on G, g. x = gx for all g, x in G
10.
Vertex (geometry)
–
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will also have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices, ears and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices
11.
Isometry
–
In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. Isometries are often used in constructions where one space is embedded in another space, for instance, the completion of a metric space M involves an isometry from M into M, a quotient set of the space of Cauchy sequences on M. The original space M is thus isometrically isomorphic to a subspace of a metric space. An isometric surjective linear operator on a Hilbert space is called a unitary operator, let X and Y be metric spaces with metrics dX and dY. A map ƒ, X → Y is called an isometry or distance preserving if for any a, b ∈ X one has d Y = d X. An isometry is automatically injective, otherwise two points, a and b, could be mapped to the same point, thereby contradicting the coincidence axiom of the metric d. This proof is similar to the proof that an order embedding between partially ordered sets is injective, clearly, every isometry between metric spaces is a topological embedding. A global isometry, isometric isomorphism or congruence mapping is a bijective isometry, like any other bijection, a global isometry has a function inverse. The inverse of an isometry is also a global isometry. Two metric spaces X and Y are called if there is a bijective isometry from X to Y. The set of bijective isometries from a space to itself forms a group with respect to function composition. This term is often abridged to simply isometry, so one should care to determine from context which type is intended. Any reflection, translation and rotation is a global isometry on Euclidean spaces, the map x ↦ | x | in R is a path isometry but not an isometry. Note that unlike an isometry, it is not injective, the isometric linear maps from Cn to itself are given by the unitary matrices. Given two normed vector spaces V and W, an isometry is a linear map f, V → W that preserves the norms. Linear isometries are distance-preserving maps in the above sense and they are global isometries if and only if they are surjective. By the Mazur-Ulam theorem, any isometry of normed spaces over R is affine. Note that ε-isometries are not assumed to be continuous, the restricted isometry property characterizes nearly isometric matrices for sparse vectors
12.
Congruence (geometry)
–
In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. This means that either object can be repositioned and reflected so as to coincide precisely with the other object, so two distinct plane figures on a piece of paper are congruent if we can cut them out and then match them up completely. Turning the paper over is permitted, in elementary geometry the word congruent is often used as follows. The word equal is often used in place of congruent for these objects, two line segments are congruent if they have the same length. Two angles are congruent if they have the same measure, two circles are congruent if they have the same diameter. The related concept of similarity applies if the objects differ in size, for two polygons to be congruent, they must have an equal number of sides. Two polygons with n sides are congruent if and only if they each have identical sequences side-angle-side-angle-. for n sides. Congruence of polygons can be established graphically as follows, First, match, second, draw a vector from one of the vertices of the one of the figures to the corresponding vertex of the other figure. Translate the first figure by this vector so that two vertices match. Third, rotate the translated figure about the matched vertex until one pair of corresponding sides matches, fourth, reflect the rotated figure about this matched side until the figures match. If at any time the step cannot be completed, the polygons are not congruent, two triangles are congruent if their corresponding sides are equal in length, in which case their corresponding angles are equal in measure. SSS, If three pairs of sides of two triangles are equal in length, then the triangles are congruent, ASA, If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. The ASA Postulate was contributed by Thales of Miletus, in most systems of axioms, the three criteria—SAS, SSS and ASA—are established as theorems. In the School Mathematics Study Group system SAS is taken as one of 22 postulates, AAS, If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. For American usage, AAS is equivalent to an ASA condition, RHS, also known as HL, If two right-angled triangles have their hypotenuses equal in length, and a pair of shorter sides are equal in length, then the triangles are congruent. The SSA condition which specifies two sides and a non-included angle does not by itself prove congruence, in order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides. The opposite side is longer when the corresponding angles are acute. This is the case and two different triangles can be formed from the given information, but further information distinguishing them can lead to a proof of congruence
13.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
14.
Regular polyhedron
–
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive, in classical contexts, many different equivalent definitions are used, a common one is that faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form, there are 5 finite convex regular polyhedra, known as the Platonic solids. These are the, tetrahedron, cube, octahedron, dodecahedron and icosahedron, there are also four regular star polyhedra, making nine regular polyhedra in all. All the dihedral angles of the polyhedron are equal All the vertex figures of the polyhedron are regular polygons, All the solid angles of the polyhedron are congruent. A regular polyhedron has all of three related spheres which share its centre, An insphere, tangent to all faces, an intersphere or midsphere, tangent to all edges. A circumsphere, tangent to all vertices, the regular polyhedra are the most symmetrical of all the polyhedra. They lie in just three symmetry groups, which are named after them, Tetrahedral Octahedral Icosahedral Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry, the five Platonic solids have an Euler characteristic of 2. Some of the stars have a different value. The sum of the distances from any point in the interior of a polyhedron to the sides is independent of the location of the point. However, the converse does not hold, not even for tetrahedra, in a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows, The tetrahedron is self-dual, the cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other, the small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other, the Schläfli symbol of the dual is just the original written backwards, for example the dual of is. See also Regular polytope, History of discovery, stones carved in shapes resembling clusters of spheres or knobs have been found in Scotland and may be as much as 4,000 years old. Some of these stones show not only the symmetries of the five Platonic solids, examples of these stones are on display in the John Evans room of the Ashmolean Museum at Oxford University. Why these objects were made, or how their creators gained the inspiration for them, is a mystery, the earliest known written records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, euclids reference to Plato led to their common description as the Platonic solids
15.
Quasiregular polyhedron
–
In geometry, a quasiregular polyhedron is a semiregular polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are edge-transitive and hence a step closer to regular polyhedra than the semiregular which are merely vertex-transitive, there are only two convex quasiregular polyhedra, the cuboctahedron and the icosidodecahedron. These forms representing a pair of a figure and its dual can be given a vertical Schläfli symbol or r to represent their containing the faces of both the regular and dual regular. A quasiregular polyhedron with this symbol will have a vertex configuration p. q. p. q, more generally, a quasiregular figure can have a vertex configuration r, representing r instances of the faces around the vertex. Tilings of the plane can also be quasiregular, specifically the trihexagonal tiling, other quasiregular tilings exist on the hyperbolic plane, like the triheptagonal tiling,2. Or more generally,2, with 1/p+1/q<1/2, a regular figure with Schläfli symbol can be quasiregular, with vertex configuration q/2, if q is even. The octahedron can be considered quasiregular as a tetratetrahedron,2, similarly the square tiling 2 can be considered quasiregular, colored as a checkerboard. Also the triangular tiling can have alternately colored triangle faces,3, Coxeter defines a quasiregular polyhedron as one having a Wythoff symbol in the form p | q r, and it is regular if q=2 or q=r. In this form it is known as the tetratetrahedron. The remaining convex polyhedra have an odd number of faces at each vertex so cannot be colored in a way that preserves edge transitivity. It has Coxeter-Dynkin diagram Each of these forms the core of a dual pair of regular polyhedra. The names of two of these clues to the associated dual pair, respectively the cube + octahedron. The octahedron is the core of a pair of tetrahedra. Each of these quasiregular polyhedra can be constructed by an operation on either regular parent, truncating the edges fully. This sequence continues as the tiling, vertex figure 2 - a quasiregular tiling based on the triangular tiling. But not everybody uses this terminology and these duals are transitive on their edges and faces, they are the edge-transitive Catalan solids. The convex ones are, in corresponding order as above, The rhombic dodecahedron, the rhombic triacontahedron, with two types of alternating vertices,20 with three rhombic faces, and 12 with five rhombic faces. In addition, by duality with the octahedron, the cube and their face configuration are of the form V3. n.3. n, and Coxeter-Dynkin diagram These three quasiregular duals are also characterised by having rhombic faces
16.
Semiregular polyhedron
–
The term semiregular polyhedron is used variously by different authors. In its original definition, it is a polyhedron with faces and a symmetry group which is transitive on its vertices. These polyhedra include, The thirteen Archimedean solids, an infinite series of convex prisms. An infinite series of convex antiprisms and these semiregular solids can be fully specified by a vertex configuration, a listing of the faces by number of sides in order as they occur around a vertex. For example,3.5.3.5, represents the icosidodecahedron which alternates two triangles and two pentagons around each vertex,3.3.3.5 in contrast is a pentagonal antiprism. These polyhedra are sometimes described as vertex-transitive, since Gosset, other authors have used the term semiregular in different ways in relation to higher dimensional polytopes. E. L. Elte provided a definition which Coxeter found too artificial, Coxeter himself dubbed Gossets figures uniform, with only a quite restricted subset classified as semiregular. Yet others have taken the path, categorising more polyhedra as semiregular. These include, Three sets of polyhedra which meet Gossets definition. The duals of the above semiregular solids, arguing that since the polyhedra share the same symmetries as the originals. These duals include the Catalan solids, the convex dipyramids and antidipyramids or trapezohedra, a further source of confusion lies in the way that the Archimedean solids are defined, again with different interpretations appearing. Gossets definition of semiregular includes figures of higher symmetry, the regular and quasiregular polyhedra and this naming system works well, and reconciles many of the confusions. Assuming that ones stated definition applies only to convex polyhedra is probably the most common failing, Coxeter, Cromwell and Cundy & Rollett are all guilty of such slips. In many works semiregular polyhedron is used as a synonym for Archimedean solid and we can distinguish between the facially-regular and vertex-transitive figures based on Gosset, and their vertically-regular and facially-transitive duals. Later, Coxeter would quote Gossets definition without comment, thus accepting it by implication, peter Cromwell writes in a footnote to Page 149 that, in current terminology, semiregular polyhedra refers to the Archimedean and Catalan solids. On Page 80 he describes the thirteen Archimedeans as semiregular, while on Pages 367 ff. he discusses the Catalans, by implication this treats the Catalans as not semiregular, thus effectively contradicting the definition he provided in the earlier footnote. Semiregular polytope Regular polyhedron Weisstein, Eric W. Semiregular polyhedron
17.
Convex polyhedron
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
18.
Star polyhedron
–
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two kinds of star polyhedron, Polyhedra which self-intersect in a repetitive way. Concave polyhedra of a kind which alternate convex and concave or saddle vertices in a repetitive way. Mathematically these figures are examples of star domains, mathematical studies of star polyhedra are usually concerned with regular, uniform polyhedra, or the duals of the uniform polyhedra. All these stars are of the self-intersecting kind, the regular star polyhedra are self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures, There are four regular star polyhedra, known as the Kepler-Poinsot polyhedra. The Schläfli symbol implies faces with p sides, and vertex figures with q sides, two of them have pentagrammic faces and two have pentagrammic vertex figures. These images show each form with a single face colored yellow to show the visible portion of that face, There are many uniform star polyhedra including two infinite series, of prisms and of antiprisms, and their duals. The uniform and dual uniform polyhedra are also self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures or both, the uniform star polyhedra have regular faces or regular star polygon faces. The dual uniform polyhedra have regular faces or regular star polygon vertex figures. Beyond the forms above, there are unlimited classes of self-intersecting polyhedra, two important classes are the stellations of convex polyhedra and their duals, the facettings of the dual polyhedra. For example, the complete stellation of the icosahedron can be interpreted as a polyhedron composed of 12 identical faces. Below is an illustration of this polyhedron with one drawn in yellow. A similarly self-intersecting polytopes in any number of dimensions is called a star polytope, a regular polytope is a star polytope if either its facet or its vertex figure is a star polytope. In four dimensions, the 10 regular star polychora are called the Schläfli-Hess polychora, analogous to the regular star polyhedra, these 10 are all composed of facets which are either one of the five regular Platonic solids or one of the four regular star Kepler-Poinsot polyhedra. For example, the grand stellated 120-cell, projected orthogonally into 3-space, looks like this. A polyhedron which does not cross itself, such that all of the interior can be seen from one point, is an example of a star domain
19.
Prism (geometry)
–
In geometry, a prism is a polyhedron comprising an n-sided polygonal base, a second base which is a translated copy of the first, and n other faces joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases, prisms are named for their bases, so a prism with a pentagonal base is called a pentagonal prism. The prisms are a subclass of the prismatoids, a right prism is a prism in which the joining edges and faces are perpendicular to the base faces. This applies if the faces are rectangular. If the joining edges and faces are not perpendicular to the base faces, for example a parallelepiped is an oblique prism of which the base is a parallelogram, or equivalently a polyhedron with six faces which are all parallelograms. A truncated prism is a prism with nonparallel top and bottom faces, some texts may apply the term rectangular prism or square prism to both a right rectangular-sided prism and a right square-sided prism. A right p-gonal prism with rectangular sides has a Schläfli symbol ×, a right rectangular prism is also called a cuboid, or informally a rectangular box. A right square prism is simply a box, and may also be called a square cuboid. A right rectangular prism has Schläfli symbol ××, an n-prism, having regular polygon ends and rectangular sides, approaches a cylindrical solid as n approaches infinity. The term uniform prism or semiregular prism can be used for a prism with square sides. A uniform p-gonal prism has a Schläfli symbol t, right prisms with regular bases and equal edge lengths form one of the two infinite series of semiregular polyhedra, the other series being the antiprisms. The dual of a prism is a bipyramid. The volume of a prism is the product of the area of the base, the volume is therefore, V = B ⋅ h where B is the base area and h is the height. The volume of a prism whose base is a regular n-sided polygon with side s is therefore. The surface area of a prism is 2 · B + P · h, where B is the area of the base, h the height. The surface area of a prism whose base is a regular n-sided polygon with side length s and height h is therefore. The rotation group is Dn of order 2n, except in the case of a cube, which has the symmetry group O of order 24. The symmetry group Dnh contains inversion iff n is even, a prismatic polytope is a higher-dimensional generalization of a prism
20.
Antiprism
–
In geometry, an n-sided antiprism is a polyhedron composed of two parallel copies of some particular n-sided polygon, connected by an alternating band of triangles. Antiprisms are a subclass of the prismatoids and are a type of snub polyhedra, Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals. In the case of a regular n-sided base, one considers the case where its copy is twisted by an angle 180°/n. Extra regularity is obtained when the line connecting the centers is perpendicular to the base planes. As faces, it has the two bases and, connecting those bases, 2n isosceles triangles. A uniform antiprism has, apart from the faces, 2n equilateral triangles as faces. As a class, the uniform antiprisms form a series of vertex-uniform polyhedra. For n =2 we have as degenerate case the regular tetrahedron as a digonal antiprism, the dual polyhedra of the antiprisms are the trapezohedra. Let a be the edge-length of a uniform antiprism, then the volume is V = n 4 cos 2 π2 n −1 sin 3 π2 n 12 sin 2 π n a 3 and the surface area is A = n 2 a 2. There are a set of truncated antiprisms, including a lower-symmetry form of the truncated octahedron. These can be alternated to create snub antiprisms, two of which are Johnson solids, and the snub triangular antiprism is a lower form of the icosahedron. The symmetry group contains inversion if and only if n is odd, uniform star antiprisms are named by their star polygon bases, and exist in prograde and retrograde solutions. Crossed forms have intersecting vertex figures, and are denoted by inverted fractions, p/ instead of p/q, in the retrograde forms but not in the prograde forms, the triangles joining the star bases intersect the axis of rotational symmetry. Some retrograde star antiprisms with regular star polygon bases cannot be constructed with equal edge lengths, star antiprism compounds also can be constructed where p and q have common factors, thus a 10/4 antiprism is the compound of two 5/2 star antiprisms. Prism Apeirogonal antiprism Grand antiprism – a four-dimensional polytope One World Trade Center, California, University of California Press Berkeley. Chapter 2, Archimedean polyhedra, prisma and antiprisms Weisstein, Eric W. Antiprism, archived from the original on 4 February 2007. Archived from the original on 4 February 2007, nonconvex Prisms and Antiprisms Paper models of prisms and antiprisms
21.
Archimedean solid
–
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the semi-regular convex polyhedrons composed of regular meeting in identical vertices, excluding the 5 Platonic solids. They differ from the Johnson solids, whose regular polygonal faces do not meet in identical vertices, identical vertices means that for any two vertices, there is a global isometry of the entire solid that takes one vertex to the other. Excluding these two families, there are 13 Archimedean solids. All the Archimedan solids can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry, the Archimedean solids take their name from Archimedes, who discussed them in a now-lost work. Pappus refers to it, stating that Archimedes listed 13 polyhedra, kepler may have also found the elongated square gyrobicupola, at least, he once stated that there were 14 Archimedean solids. However, his published enumeration only includes the 13 uniform polyhedra, here the vertex configuration refers to the type of regular polygons that meet at any given vertex. For example, a configuration of means that a square, hexagon. Some definitions of semiregular polyhedron include one more figure, the square gyrobicupola or pseudo-rhombicuboctahedron. The number of vertices is 720° divided by the angle defect. The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular, the duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra, these are the face-uniform solids with regular vertices, the snub cube and snub dodecahedron are known as chiral, as they come in a left-handed form and right-handed form. When something comes in forms which are each others three-dimensional mirror image. The different Archimedean and Platonic solids can be related to each other using a handful of general constructions, starting with a Platonic solid, truncation involves cutting away of corners. To preserve symmetry, the cut is in a perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners. Depending on how much is truncated, different Platonic and Archimedean solids can be created, expansion or cantellation involves moving each face away from the center and taking the convex hull. Expansion with twisting also involves rotating the faces, thus breaking the rectangles corresponding to edges into triangles, the last construction we use here is truncation of both corners and edges. Ignoring scaling, expansion can also be viewed as truncation of corners and edges, note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron
22.
Uniform star polyhedra
–
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting, each polyhedron can contain either star polygon faces, star polygon vertex figures or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra,5 quasiregular ones, there are also two infinite sets of uniform star prisms and uniform star antiprisms. The nonconvex forms are constructed from Schwarz triangles, all the uniform polyhedra are listed below by their symmetry groups and subgrouped by their vertex arrangements. Regular polyhedra are labeled by their Schläfli symbol, other nonregular uniform polyhedra are listed with their vertex configuration or their Uniform polyhedron index U. Note, For nonconvex forms below an additional descriptor Nonuniform is used when the convex hull vertex arrangement has same topology as one of these, for example an nonuniform cantellated form may have rectangles created in place of the edges rather than squares. There is one form, the tetrahemihexahedron which has tetrahedral symmetry. There are two Schwarz triangles that generate unique nonconvex uniform polyhedra, one triangle, and one general triangle. The general triangle generates the octahemioctahedron which is given further on with its octahedral symmetry. There are 8 convex forms, and 10 nonconvex forms with octahedral symmetry, there are four Schwarz triangles that generate nonconvex forms, two right triangles, and, and two general triangles. There are 8 convex forms and 46 nonconvex forms with icosahedral symmetry, some of the nonconvex snub forms have reflective vertex symmetry. Coxeter identified a number of star polyhedra by the Wythoff construction method. It is counted as a uniform polyhedron rather than a uniform polyhedron because of its double edges. Star polygon List of uniform polyhedra List of uniform polyhedra by Schwarz triangle Coxeter, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, a proof of the completeness on the list of elementary homogeneous polyhedra, Ukrainskiui Geometricheskiui Sbornik, 139–156, MR0326550 Skilling, J. The complete set of polyhedra, Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences,278, 111–135, doi,10. 1098/rsta.1975.0022, ISSN 0080-4614, JSTOR74475, MR0365333 HarEl, zvi Har’El, Kaleido software, Images, dual images Mäder, R. E. Messer, Peter W. Closed-Form Expressions for Uniform Polyhedra and Their Duals
23.
Great disnub dirhombidodecahedron
–
In geometry, the great disnub dirhombidodecahedron, also called Skillings figure, is a degenerate uniform star polyhedron. It was proven in 1970 that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms, John Skilling discovered another degenerate example, the great disnub dirhombidodecahedron, by relaxing the condition that edges must be single. Due to its geometric realization having some double edges where 4 faces meet, it is a uniform polyhedron. The Euler characteristic of the polyhedron is -96. If the pairs of coinciding edges in the geometric realization are considered to be single edges, then it has only 240 edges, the vertex figure has 4 square faces passing through the center of the model. It may be constructed as the exclusive or of the great dirhombicosidodecahedron and it shares the same edge arrangement as the great dirhombicosidodecahedron, but has a different set of triangular faces. The vertices and edges are shared with the uniform compounds of 20 octahedra or 20 tetrahemihexahedra. 180 of the edges are shared with the great snub dodecicosidodecahedron, the dual of the great disnub dirhombidodecahedron is called a great disnub dirhombidodecacron. It is a nonconvex isohedral polyhedron. Wenninger suggested these figures are members of a new class of stellation polyhedra, however, he also acknowledged that strictly speaking they are not polyhedra because their construction does not conform to the usual definitions. There are different conventions about how to colour the faces of this polyhedron, although the common way to fill in a polygon is to colour its whole interior, this can result in some filled regions hanging as membranes over empty space. That problem is avoided by another filling rule, in which orientable polyhedra are filled traditionally, in addition, overlapping regions of coplanar faces can cancel each other out. List of uniform polyhedra Skilling, John, The complete set of polyhedra, Philosophical Transactions of the Royal Society A,278, 111–135
24.
Dual polyhedra
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
25.
Face-transitive
–
In geometry, a polytope of dimension 3 or higher is isohedral or face-transitive when all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, in other words, for any faces A and B, there must be a symmetry of the entire solid by rotations and reflections that maps A onto B. For this reason, convex polyhedra are the shapes that will make fair dice. They can be described by their face configuration, a polyhedron which is isohedral has a dual polyhedron that is vertex-transitive. The Catalan solids, the bipyramids and the trapezohedra are all isohedral and they are the duals of the isogonal Archimedean solids, prisms and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex, edge, a polyhedron which is isohedral and isogonal is said to be noble. A polyhedron is if it contains k faces within its symmetry fundamental domain. Similarly a k-isohedral tiling has k separate symmetry orbits, a monohedral polyhedron or monohedral tiling has congruent faces, as either direct or reflectively, which occur in one or more symmetry positions. An r-hedral polyhedra or tiling has r types of faces, a facet-transitive or isotopic figure is a n-dimensional polytopes or honeycomb, with its facets congruent and transitive. The dual of an isotope is an isogonal polytope, by definition, this isotopic property is common to the duals of the uniform polytopes. An isotopic 2-dimensional figure is isotoxal, an isotopic 3-dimensional figure is isohedral. An isotopic 4-dimensional figure is isochoric, edge-transitive Anisohedral tiling Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.367 Transitivity Olshevsky, George. Archived from the original on 4 February 2007
26.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
27.
Catalan solid
–
In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. The Catalan solids are named for the Belgian mathematician, Eugène Catalan, the Catalan solids are all convex. They are face-transitive but not vertex-transitive and this is because the dual Archimedean solids are vertex-transitive and not face-transitive. Note that unlike Platonic solids and Archimedean solids, the faces of Catalan solids are not regular polygons, however, the vertex figures of Catalan solids are regular, and they have constant dihedral angles. Being face-transitive, Catalan solids are isohedra, additionally, two of the Catalan solids are edge-transitive, the rhombic dodecahedron and the rhombic triacontahedron. These are the duals of the two quasi-regular Archimedean solids, just as prisms and antiprisms are generally not considered Archimedean solids, so bipyramids and trapezohedra are generally not considered Catalan solids, despite being face-transitive. Two of the Catalan solids are chiral, the pentagonal icositetrahedron and these each come in two enantiomorphs. Not counting the enantiomorphs, bipyramids, and trapezohedra, there are a total of 13 Catalan solids, the Catalan solids, along with their dual Archimedean solids, can be grouped by their symmetry, tetrahedral, octahedral, and icosahedral. There are 6 forms per symmetry, while the self-symmetric tetrahedral group only has three forms and two of those are duplicated with octahedral symmetry. J. lÉcole Polytechnique 41, 1-71,1865, alan Holden Shapes, Space, and Symmetry. Wenninger, Magnus, Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR730208 Williams, the Geometrical Foundation of Natural Structure, A Source Book of Design. California, University of California Press Berkeley, chapter 4, Duals of the Archimedean polyhedra, prisma and antiprisms Weisstein, Eric W. Catalan Solids. Archived from the original on 4 February 2007, Archimedean duals – at Virtual Reality Polyhedra Interactive Catalan Solid in Java
28.
Abstract polytope
–
An ordinary geometric polytope is said to be a realization in some real N-dimensional space, typically Euclidean, of the corresponding abstract polytope. The abstract definition allows some more general combinatorial structures than traditional definitions of a polytope, the term polytope is a generalisation of polygons and polyhedra into any number of dimensions. In Euclidean geometry, the six quadrilaterals illustrated are all different, yet they have a common structure in the alternating chain of four vertices and four sides which gives them their name. They are said to be isomorphic or “structure preserving”, the measurable properties of traditional polytopes such as angles, edge-lengths, skewness, straightness and convexity have no meaning for an abstract polytope. What is true for traditional polytopes may not be so for abstract ones, for example, a traditional polytope is regular if all its facets and vertex figures are regular, but this is not necessarily so for an abstract polytope. A traditional geometric polytope is said to be a realisation of the abstract polytope. A realisation is a mapping or injection of the object into a real space, typically Euclidean. The six quadrilaterals shown are all distinct realisations of the abstract quadrilateral, some of them do not conform to traditional definitions of a quadrilateral and are said to be unfaithful realisations. A conventional polytope is a faithful realisation, in an abstract polytope, each structural element - vertex, edge, cell, etc. is associated with a corresponding member or element of the set. The term face often refers to any such element e. g. a vertex, edge or a general k-face, the faces are ranked according to their associated real dimension, vertices have rank =0, edges rank =1 and so on. This usage of incidence also occurs in Finite geometry, although it differs from traditional geometry, for example in the square abcd, edges ab and bc are not abstractly incident. A polytope is defined as a set of faces P with an order relation <. Formally, P will be an ordered set, or poset. Just as the zero is necessary in mathematics, so also set theory requires an empty set which, technically. In an abstract polytope this is known as the least or null face and is a subface of all the others, since the least face is one level below the vertices or 0-faces, its rank is −1 and may be denoted as F−1. There is also a face of which all the others are subfaces. This is called the greatest face, in an n-dimensional polytope, the greatest face has rank = n and may be denoted as Fn. It is sometimes realized as the interior of the geometric figure and these least and greatest faces are sometimes called improper faces, with all others being proper faces
29.
Pythagoreanism
–
Later revivals of Pythagorean doctrines led to what is now called Neopythagoreanism or Neoplatonism. Pythagorean ideas exercised an influence on Aristotle, and Plato. According to tradition, pythagoreanism developed at some point into two schools of thought, the mathēmatikoi and the akousmatikoi. There is the inner and outer circle John Burnet noted Lastly, we have one admitted instance of a philosophic guild, that of the Pythagoreans. And it will be found that the hypothesis, if it is to be called by that name, of a regular organisation of scientific activity will alone explain all the facts. The development of doctrine in the hands of Thales, Anaximander, according to Iamblichus in The life of Pythagoras, by Thomas Taylor There were also two forms of philosophy, for the two genera of those that pursued it, the Acusmatici and the Mathematici. The latter are acknowledged to be Pythagoreans by the rest but the Mathematici do not admit that the Acusmatici derived their instructions from Pythagoras, memory was the most valued faculty. All these auditions were of three kinds, some signifying what a thing is, others what it especially is, others what ought or ought not to be done. By musical sounds alone unaccompanied with words they healed the passions of the soul and certain diseases, enchanting in reality and it is probable that from hence this name epode, i. e. enchantment, came to be generally used. Each of these he corrected through the rule of virtue, attempering them through appropriate melodies, therefore its function is none of what are called ‘parts of virtue’, for it is better than all of them and the end produced is always better than the knowledge that produces it. Nor is every virtue of the soul in that way a function, nor is success, for if it is to be productive, different ones will produce different things, as the skill of building produces a house. However, intelligence is a part of virtue and of success, according to historians like Thomas Gale, Thomas Taler, or Cantor, Archytas became the head of the school, about a century after the murder of Pythagoras. According to August Böckh, who cites Nicomachus, Philolaus was the successor of Pythagoras, and according to Cicero, Philolaus was teacher of Archytas of Tarentum. According to the historians from the Stanford Encyclopedia of Philosophy, Philolaus and Eurytus are identified by Aristoxenus as teachers of the last generation of Pythagoreans, a Echecrates is mentioned by Aristoxenus as a student of Philolaus and Eurytus. The mathēmatikoi were supposed to have extended and developed the more mathematical, the mathēmatikoi did think that the akousmatikoi were Pythagorean, but felt that their own group was more representative of Pythagoras. Commentary from Sir William Smith, Dictionary of Greek and Roman Biography, Aristotle states the fundamental maxim of the Pythagoreans in various forms. According to Philolaus, number is the dominant and self-produced bond of the continuance of things. But number has two forms, the even and the odd, and a third, resulting from the mixture of the two, the even-odd and this third species is one itself, for it is both even and odd
30.
Plato
–
Plato was a philosopher in Classical Greece and the founder of the Academy in Athens, the first institution of higher learning in the Western world. He is widely considered the most pivotal figure in the development of philosophy, unlike nearly all of his philosophical contemporaries, Platos entire work is believed to have survived intact for over 2,400 years. Along with his teacher, Socrates, and his most famous student, Aristotle, Plato laid the foundations of Western philosophy. Alfred North Whitehead once noted, the safest general characterization of the European philosophical tradition is that it consists of a series of footnotes to Plato. In addition to being a figure for Western science, philosophy. Friedrich Nietzsche, amongst other scholars, called Christianity, Platonism for the people, Plato was the innovator of the written dialogue and dialectic forms in philosophy, which originate with him. He was not the first thinker or writer to whom the word “philosopher” should be applied, few other authors in the history of Western philosophy approximate him in depth and range, perhaps only Aristotle, Aquinas and Kant would be generally agreed to be of the same rank. Due to a lack of surviving accounts, little is known about Platos early life, the philosopher came from one of the wealthiest and most politically active families in Athens. Ancient sources describe him as a bright though modest boy who excelled in his studies, the exact time and place of Platos birth are unknown, but it is certain that he belonged to an aristocratic and influential family. Based on ancient sources, most modern scholars believe that he was born in Athens or Aegina between 429 and 423 BCE. According to a tradition, reported by Diogenes Laertius, Ariston traced his descent from the king of Athens, Codrus. Platos mother was Perictione, whose family boasted of a relationship with the famous Athenian lawmaker, besides Plato himself, Ariston and Perictione had three other children, these were two sons, Adeimantus and Glaucon, and a daughter Potone, the mother of Speusippus. The brothers Adeimantus and Glaucon are mentioned in the Republic as sons of Ariston, and presumably brothers of Plato, but in a scenario in the Memorabilia, Xenophon confused the issue by presenting a Glaucon much younger than Plato. Then, at twenty-eight, Hermodorus says, went to Euclides in Megara, as Debra Nails argues, The text itself gives no reason to infer that Plato left immediately for Megara and implies the very opposite. Thus, Nails dates Platos birth to 424/423, another legend related that, when Plato was an infant, bees settled on his lips while he was sleeping, an augury of the sweetness of style in which he would discourse about philosophy. Ariston appears to have died in Platos childhood, although the dating of his death is difficult. Perictione then married Pyrilampes, her mothers brother, who had served many times as an ambassador to the Persian court and was a friend of Pericles, Pyrilampes had a son from a previous marriage, Demus, who was famous for his beauty. Perictione gave birth to Pyrilampes second son, Antiphon, the half-brother of Plato and these and other references suggest a considerable amount of family pride and enable us to reconstruct Platos family tree
31.
Euclid
–
Euclid, sometimes called Euclid of Alexandria to distinguish him from Euclides of Megara, was a Greek mathematician, often referred to as the father of geometry. He was active in Alexandria during the reign of Ptolemy I, in the Elements, Euclid deduced the principles of what is now called Euclidean geometry from a small set of axioms. Euclid also wrote works on perspective, conic sections, spherical geometry, number theory, Euclid is the anglicized version of the Greek name Εὐκλείδης, which means renowned, glorious. Very few original references to Euclid survive, so little is known about his life, the date, place and circumstances of both his birth and death are unknown and may only be estimated roughly relative to other people mentioned with him. He is rarely mentioned by name by other Greek mathematicians from Archimedes onward, the few historical references to Euclid were written centuries after he lived by Proclus c.450 AD and Pappus of Alexandria c.320 AD. Proclus introduces Euclid only briefly in his Commentary on the Elements, Proclus later retells a story that, when Ptolemy I asked if there was a shorter path to learning geometry than Euclids Elements, Euclid replied there is no royal road to geometry. This anecdote is questionable since it is similar to a story told about Menaechmus, a detailed biography of Euclid is given by Arabian authors, mentioning, for example, a birth town of Tyre. This biography is generally believed to be completely fictitious, however, this hypothesis is not well accepted by scholars and there is little evidence in its favor. The only reference that historians rely on of Euclid having written the Elements was from Proclus, although best known for its geometric results, the Elements also includes number theory. The geometrical system described in the Elements was long known simply as geometry, today, however, that system is often referred to as Euclidean geometry to distinguish it from other so-called non-Euclidean geometries that mathematicians discovered in the 19th century. In addition to the Elements, at least five works of Euclid have survived to the present day and they follow the same logical structure as Elements, with definitions and proved propositions. Data deals with the nature and implications of information in geometrical problems. On Divisions of Figures, which only partially in Arabic translation. It is similar to a first-century AD work by Heron of Alexandria, catoptrics, which concerns the mathematical theory of mirrors, particularly the images formed in plane and spherical concave mirrors. The attribution is held to be anachronistic however by J J OConnor, phaenomena, a treatise on spherical astronomy, survives in Greek, it is quite similar to On the Moving Sphere by Autolycus of Pitane, who flourished around 310 BC. Optics is the earliest surviving Greek treatise on perspective, in its definitions Euclid follows the Platonic tradition that vision is caused by discrete rays which emanate from the eye. One important definition is the fourth, Things seen under a greater angle appear greater, proposition 45 is interesting, proving that for any two unequal magnitudes, there is a point from which the two appear equal. Other works are attributed to Euclid, but have been lost
32.
Etruscans
–
The Etruscan civilization is the modern name given to a powerful and wealthy civilization of ancient Italy in the area corresponding roughly to Tuscany, western Umbria, and northern Lazio. Culture that is identifiably Etruscan developed in Italy after about 800 BC, the latter gave way in the 7th century BC to a culture that was influenced by ancient Greece, Magna Graecia, and Phoenicia. The decline was gradual, but by 500 BC the political destiny of Italy had passed out of Etruscan hands, the last Etruscan cities were formally absorbed by Rome around 100 BC. Politics were based on the city, and probably the family unit. In their heyday, the Etruscan elite grew very rich through trade with the Celtic world to the north and the Greeks to the south, archaic Greece had a huge influence on their art and architecture, and Greek mythology was evidently very familiar to them. The study also excluded recent Anatolian connection, the ancient Romans referred to the Etruscans as the Tuscī or Etruscī. Their Roman name is the origin of the terms Tuscany, which refers to their heartland, and Etruria, which can refer to their wider region. In Attic Greek, the Etruscans were known as Tyrrhenians, from which the Romans derived the names Tyrrhēnī, Tyrrhēnia, the word may also be related to the Hittite Taruisa. The Etruscans called themselves Rasenna, which was syncopated to Rasna or Raśna, the origins of the Etruscans are mostly lost in prehistory, although Greek historians as early as the 5th century BC, repeatedly associated the Tyrrhenians with Pelasgians. Strabo as well as the Homeric Hymn to Dionysus make mention of the Tyrrhenians as pirates, pliny the Elder put the Etruscans in the context of the Rhaetian people to the north and wrote in his Natural History, Adjoining these the Noricans are the Raeti and Vindelici. All are divided into a number of states, the Raeti are believed to be people of Tuscan race driven out by the Gauls, their leader was named Raetus. Historians have no literature and no original Etruscan texts of religion or philosophy, therefore, much of what is known about this civilization is derived from grave goods, another source of genetic data on Etruscan origins is from four ancient breeds of cattle. Analyzing the mitochondrial DNA of these and seven other breeds of Italian cattle, the other Italian breeds were linked to northern Europe. Etruscan expansion was focused both to the north beyond the Apennine Mountains and into Campania, some small towns in the sixth century BC disappeared during this time, ostensibly consumed by greater, more powerful neighbours. However, it is certain that the structure of the Etruscan culture was similar to, albeit more aristocratic than. The mining and commerce of metal, especially copper and iron, led to an enrichment of the Etruscans and to the expansion of their influence in the Italian peninsula and the western Mediterranean Sea. Here, their interests collided with those of the Greeks, especially in the sixth century BC and this led the Etruscans to ally themselves with Carthage, whose interests also collided with the Greeks. Around 540 BC, the Battle of Alalia led to a new distribution of power in the western Mediterranean, from the first half of the 5th century BC, the new political situation meant the beginning of the Etruscan decline after losing their southern provinces
33.
Cuboctahedron
–
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, as such, it is a quasiregular polyhedron, i. e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. Its dual polyhedron is the rhombic dodecahedron, the cuboctahedron was probably known to Plato, Herons Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name Dymaxion to this shape, used in a version of the Dymaxion map. He also called it the Vector Equilibrium and he called a cuboctahedron consisting of rigid struts connected by flexible vertices a jitterbug. With Oh symmetry, order 48, it is a cube or rectified octahedron With Td symmetry, order 24. With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are, the cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, and the two types of faces, triangular and square. The last two correspond to the B2 and A2 Coxeter planes, the skew projections show a square and hexagon passing through the center of the cuboctahedron. The cuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The cuboctahedrons 12 vertices can represent the vectors of the simple Lie group A3. With the addition of 6 vertices of the octahedron, these represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron, if these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created. The cuboctahedron can also be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point and this dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra. A cuboctahedron can be obtained by taking a cross section of a four-dimensional 16-cell. Its first stellation is the compound of a cube and its dual octahedron, the cuboctahedron is a rectified cube and also a rectified octahedron. It is also a cantellated tetrahedron, with this construction it is given the Wythoff symbol,33 |2
34.
Archimedes
–
Archimedes of Syracuse was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the scientists in classical antiquity. He was also one of the first to apply mathematics to physical phenomena, founding hydrostatics and statics and he is credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion. Archimedes died during the Siege of Syracuse when he was killed by a Roman soldier despite orders that he should not be harmed. Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere and a cylinder, unlike his inventions, the mathematical writings of Archimedes were little known in antiquity. Archimedes was born c.287 BC in the city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek historian John Tzetzes that Archimedes lived for 75 years, in The Sand Reckoner, Archimedes gives his fathers name as Phidias, an astronomer about whom nothing is known. Plutarch wrote in his Parallel Lives that Archimedes was related to King Hiero II, a biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure. It is unknown, for instance, whether he married or had children. During his youth, Archimedes may have studied in Alexandria, Egypt and he referred to Conon of Samos as his friend, while two of his works have introductions addressed to Eratosthenes. Archimedes died c.212 BC during the Second Punic War, according to the popular account given by Plutarch, Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, the soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives an account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he considered him a valuable asset and had ordered that he not be harmed. Marcellus called Archimedes a geometrical Briareus, the last words attributed to Archimedes are Do not disturb my circles, a reference to the circles in the mathematical drawing that he was supposedly studying when disturbed by the Roman soldier. This quote is given in Latin as Noli turbare circulos meos. The phrase is given in Katharevousa Greek as μὴ μου τοὺς κύκλους τάραττε
35.
Pappus of Alexandria
–
Pappus of Alexandria was one of the last great Alexandrian mathematicians of Antiquity, known for his Synagoge or Collection, and for Pappuss hexagon theorem in projective geometry. Nothing is known of his life, other than, that he had a son named Hermodorus, Collection, his best-known work, is a compendium of mathematics in eight volumes, the bulk of which survives. It covers a range of topics, including geometry, recreational mathematics, doubling the cube, polygons. Pappus flourished in the 4th century AD, in a period of general stagnation in mathematical studies, he stands out as a remarkable exception. In this respect the fate of Pappus strikingly resembles that of Diophantus, in his surviving writings, Pappus gives no indication of the date of the authors whose works he makes use of, or of the time at which he himself wrote. If no other information were available, all that could be known would be that he was later than Ptolemy, whom he quotes, and earlier than Proclus. The Suda states that Pappus was of the age as Theon of Alexandria. A different date is given by a note to a late 10th-century manuscript, which states, next to an entry on Emperor Diocletian. This works out as October 18,320 AD, and so Pappus must have flourished c.320 AD. The great work of Pappus, in eight books and titled Synagoge or Collection, has not survived in complete form, the first book is lost, and the rest have suffered considerably. The Suda enumerates other works of Pappus, Χωρογραφία οἰκουμενική, commentary on the 4 books of Ptolemys Almagest, Ποταμοὺς τοὺς ἐν Λιβύῃ, Pappus himself mentions another commentary of his own on the Ἀνάλημμα of Diodorus of Alexandria. Pappus also wrote commentaries on Euclids Elements, and on Ptolemys Ἁρμονικά and these discoveries form, in fact, a text upon which Pappus enlarges discursively. Heath considered the systematic introductions to the books as valuable, for they set forth clearly an outline of the contents. From these introductions one can judge of the style of Pappuss writing, heath also found his characteristic exactness made his Collection a most admirable substitute for the texts of the many valuable treatises of earlier mathematicians of which time has deprived us. The portions of Collection which has survived can be summarized as follows and we can only conjecture that the lost Book I, like Book II, was concerned with arithmetic, Book III being clearly introduced as beginning a new subject. The whole of Book II discusses a method of multiplication from a book by Apollonius of Perga. The final propositions deal with multiplying together the values of Greek letters in two lines of poetry, producing two very large numbers approximately equal to 2*1054 and 2*1038. Book III contains geometrical problems, plane and solid, on the arithmetic, geometric and harmonic means between two straight lines, and the problem of representing all three in one and the same geometrical figure
36.
Piero della Francesca
–
Piero della Francesca was an Italian painter of the Early Renaissance. As testified by Giorgio Vasari in his Lives of the Most Excellent Painters, Sculptors, nowadays Piero della Francesca is chiefly appreciated for his art. His painting is characterized by its humanism, its use of geometric forms. His most famous work is the cycle of frescoes The History of the True Cross in the church of San Francesco in the Tuscan town of Arezzo. He was most probably apprenticed to the local painter Antonio di Giovanni dAnghiari, because in documents about payments it is noted that he was working with Antonio in 1432 and May 1438. Besides, he took notice of the work of some of the Sienese artists active in San Sepolcro during his youth. In 1439 Piero received, together with Domenico Veneziano, payments for his work on frescoes for the church of SantEgidio in Florence, in Florence he must have met leading masters like Fra Angelico, Luca della Robbia, Donatello and Brunelleschi. The classicism of Masaccios frescoes and his figures in the Santa Maria del Carmine were for him an important source of inspiration. Dating of Pieros undocumented work is difficult because his style does not seem to have developed over the years, in 1442 he was listed as eligible for the City Council of San Sepolcro. Three years later, he received the commission for the Madonna della Misericordia altarpiece for the church of the Misericordia in Sansepolcro, in 1449 he executed several frescoes in the Castello Estense and the church of SantAndrea of Ferrara, also lost. His influence was strong in the later Ferrarese allegorical works of Cosimo Tura. Two years later he was in Rimini, working for the condottiero Sigismondo Pandolfo Malatesta, in this sojourn he executed in 1451 the famous fresco of St. Sigismund and Sigismondo Pandolfo Malatesta in the Tempio Malatestiano, as well as Sigismondos portrait. Thereafter Piero was active in Ancona, Pesaro and Bologna, in 1454 he signed a contract for the Polyptych of Saint Augustine in the church of SantAgostino in Sansepolcro. The central panel of this polyptic is lost and the four panels of the wings, a few years later, summoned by Pope Nicholas V, he moved to Rome, here he executed frescoes in the Basilica di Santa Maria Maggiore, of which only fragments remain. Two years later he was again in the Papal capital, for frescoes in Vatican Palace which have also been destroyed, the Baptism of Christ, in The National Gallery in London, was executed around 1460 for the high altar of the church of the Priory of S. Other notable works of Piero della Francescas maturity are the frescoes of the Resurrection of Christ in Sansepolcro, in 1452, Piero della Francesca was called to Arezzo to replace Bicci di Lorenzo in painting the frescoes of the basilica of San Francesco. The work was finished before 1466, probably between 1452 and 1456, the cycle of frescoes, depicting the Legend of the True Cross, is generally considered among his masterworks and those of Renaissance painting in general. The story in these frescoes derives from medieval sources as to how timber relics of the True Cross came to be found
37.
Luca Pacioli
–
Fra Luca Bartolomeo de Pacioli was an Italian mathematician, Franciscan friar, collaborator with Leonardo da Vinci, and a seminal contributor to the field now known as accounting. He is referred to as The Father of Accounting and Bookkeeping in Europe and he was also called Luca di Borgo after his birthplace, Borgo Sansepolcro, Tuscany. Luca Pacioli was born between 1446 and 1448 in Sansepolcro where he received an abbaco education and this was education in the vernacular rather than Latin and focused on the knowledge required of merchants. His father was Bartolomeo Pacioli, however Luca Pacioli was said to have lived with the Befolci family as a child in his birth town Sansepolcro. He moved to Venice around 1464, where he continued his own education while working as a tutor to the three sons of a merchant and it was during this period that he wrote his first book, a treatise on arithmetic for the boys he was tutoring. Between 1472 and 1475, he became a Franciscan friar, in 1475, he started teaching in Perugia, first as a private teacher, from 1477 holding the first chair in mathematics. He wrote a textbook in the vernacular for his students. He continued to work as a tutor of mathematics and was, in fact. In 1494, his first book to be printed, Summa de arithmetica, proportioni et proportionalita, was published in Venice. In 1497, he accepted an invitation from Duke Ludovico Sforza to work in Milan, there he met, taught mathematics to, collaborated and lived with Leonardo da Vinci. In 1499, Pacioli and Leonardo were forced to flee Milan when Louis XII of France seized the city and their paths appear to have finally separated around 1506. Pacioli died at about the age of 70 in 1517, most likely in Sansepolcro where it is thought that he had spent much of his final years, the manuscript was written between December 1477 and 29 April 1478. It contains 16 sections on merchant arithmetic, such as barter, exchange, profit, mixing metals, one part of 25 pages is missing from the chapter on algebra. A modern transcription has been published by Calzoni and Cavazzoni along with a translation of the chapter on partitioning problems. Proportioni et proportionalita, a textbook for use in the schools of Northern Italy and it was a synthesis of the mathematical knowledge of his time and contained the first printed work on algebra written in the vernacular. It is also notable for including the first published description of the method that Venetian merchants used during the Italian Renaissance. The system he published included most of the cycle as we know it today. He described the use of journals and ledgers, and warned that a person should not go to sleep at night until the debits equaled the credits
38.
Rhombicuboctahedron
–
In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is an Archimedean solid with eight triangular and eighteen square faces. There are 24 identical vertices, with one triangle and three meeting at each. The polyhedron has octahedral symmetry, like the cube and octahedron and its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids. Johannes Kepler in Harmonices Mundi named this polyhedron a rhombicuboctahedron, being short for truncated cuboctahedral rhombus and this truncation creates new vertices mid-edge to the rhombic dodecahedron, creating rectangular faces inside the original rhombic faces, and new square and triangle faces at the original vertices. The semiregular form here requires the geometry be adjusted so the rectangles become squares and it can also be called an expanded cube or cantellated cube or a cantellated octahedron from truncation operations of the uniform polyhedron. There are distortions of the rhombicuboctahedron that, while some of the faces are not regular polygons, are still vertex-uniform. Some of these can be made by taking a cube or octahedron and cutting off the edges, then trimming the corners, so the resulting polyhedron has six square and twelve rectangular faces. The lines along which a Rubiks Cube can be turned are, projected onto a sphere, similar, topologically identical, in fact, variants using the Rubiks Cube mechanism have been produced which closely resemble the rhombicuboctahedron. The rhombicuboctahedron is used in three uniform space-filling tessellations, the cubic honeycomb, the runcitruncated cubic honeycomb, and the runcinated alternated cubic honeycomb. The rhombicuboctahedron can be dissected into two square cupolae and an octagonal prism. A rotation of one cupola by 45 degrees creates the pseudorhombicuboctahedron, both of these polyhedra have the same vertex figure,3.4.4.4. There are three pairs of parallel planes that each intersect the rhombicuboctahedron in a regular octagon and these pieces can be reassembled to give a new solid called the elongated square gyrobicupola or pseudorhombicuboctahedron, with the symmetry of a square antiprism. The rhombicuboctahedron has six special orthogonal projections, centered, on a vertex, the last two correspond to the B2 and A2 Coxeter planes. The rhombicuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. A half symmetry form of the rhombicuboctahedron, exists with pyritohedral symmetry, as Coxeter diagram, Schläfli symbol s2 and this form can be visualized by alternatingly coloring the edges of the 6 squares. These squares can then be distorted into rectangles, while the 8 triangles remain equilateral, the 12 diagonal square faces will become isosceles trapezoids. Cartesian coordinates for the vertices of a rhombicuboctahedron centred at the origin, if the original rhombicuboctahedron has unit edge length, its dual strombic icositetrahedron has edge lengths 2710 −2 and 4 −22
39.
Leonardo da Vinci
–
He has been variously called the father of palaeontology, ichnology, and architecture, and is widely considered one of the greatest painters of all time. Sometimes credited with the inventions of the parachute, helicopter and tank, many historians and scholars regard Leonardo as the prime exemplar of the Universal Genius or Renaissance Man, an individual of unquenchable curiosity and feverishly inventive imagination. Much of his working life was spent in the service of Ludovico il Moro in Milan. He later worked in Rome, Bologna and Venice, and he spent his last years in France at the home awarded to him by Francis I of France, Leonardo was, and is, renowned primarily as a painter. Among his works, the Mona Lisa is the most famous and most parodied portrait, Leonardos drawing of the Vitruvian Man is also regarded as a cultural icon, being reproduced on items as varied as the euro coin, textbooks, and T-shirts. Perhaps fifteen of his paintings have survived, Leonardo is revered for his technological ingenuity. He conceptualised flying machines, a type of armoured fighting vehicle, concentrated power, an adding machine. Some of his inventions, however, such as an automated bobbin winder. A number of Leonardos most practical inventions are nowadays displayed as working models at the Museum of Vinci. He made substantial discoveries in anatomy, civil engineering, geology, optics, and hydrodynamics, today, Leonardo is widely considered one of the most diversely talented individuals ever to have lived. Leonardo was born on 15 April 1452 at the hour of the night in the Tuscan hill town of Vinci. He was the son of the wealthy Messer Piero Fruosino di Antonio da Vinci, a Florentine legal notary, and Caterina. Leonardo had no surname in the modern sense – da Vinci simply meaning of Vinci, his birth name was Lionardo di ser Piero da Vinci, meaning Leonardo. The inclusion of the title ser indicated that Leonardos father was a gentleman, little is known about Leonardos early life. He spent his first five years in the hamlet of Anchiano in the home of his mother and his father had married a sixteen-year-old girl named Albiera Amadori, who loved Leonardo but died young in 1465 without children. When Leonardo was sixteen, his father married again to twenty-year-old Francesca Lanfredini, pieros legitimate heirs were born from his third wife Margherita di Guglielmo and his fourth and final wife, Lucrezia Cortigiani. Leonardo received an education in Latin, geometry and mathematics. In later life, Leonardo recorded only two childhood incidents, one, which he regarded as an omen, was when a kite dropped from the sky and hovered over his cradle, its tail feathers brushing his face
40.
Johannes Kepler
–
Johannes Kepler was a German mathematician, astronomer, and astrologer. A key figure in the 17th-century scientific revolution, he is best known for his laws of motion, based on his works Astronomia nova, Harmonices Mundi. These works also provided one of the foundations for Isaac Newtons theory of universal gravitation, Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague and he was also a mathematics teacher in Linz, and an adviser to General Wallenstein. Kepler lived in an era when there was no distinction between astronomy and astrology, but there was a strong division between astronomy and physics. Kepler was born on December 27, the feast day of St John the Evangelist,1571 and his grandfather, Sebald Kepler, had been Lord Mayor of the city. By the time Johannes was born, he had two brothers and one sister and the Kepler family fortune was in decline and his father, Heinrich Kepler, earned a precarious living as a mercenary, and he left the family when Johannes was five years old. He was believed to have died in the Eighty Years War in the Netherlands and his mother Katharina Guldenmann, an innkeepers daughter, was a healer and herbalist. Born prematurely, Johannes claimed to have weak and sickly as a child. Nevertheless, he often impressed travelers at his grandfathers inn with his phenomenal mathematical faculty and he was introduced to astronomy at an early age, and developed a love for it that would span his entire life. At age six, he observed the Great Comet of 1577, in 1580, at age nine, he observed another astronomical event, a lunar eclipse, recording that he remembered being called outdoors to see it and that the moon appeared quite red. However, childhood smallpox left him with vision and crippled hands. In 1589, after moving through grammar school, Latin school, there, he studied philosophy under Vitus Müller and theology under Jacob Heerbrand, who also taught Michael Maestlin while he was a student, until he became Chancellor at Tübingen in 1590. He proved himself to be a mathematician and earned a reputation as a skilful astrologer. Under the instruction of Michael Maestlin, Tübingens professor of mathematics from 1583 to 1631 and he became a Copernican at that time. In a student disputation, he defended heliocentrism from both a theoretical and theological perspective, maintaining that the Sun was the source of motive power in the universe. Despite his desire to become a minister, near the end of his studies, Kepler was recommended for a position as teacher of mathematics and he accepted the position in April 1594, at the age of 23. Keplers first major work, Mysterium Cosmographicum, was the first published defense of the Copernican system
41.
Prismatic uniform polyhedron
–
In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids, because they are isogonal, their vertex arrangement uniquely corresponds to a symmetry group. Each has p reflection planes which contain the p-fold axis, the Dph symmetry group contains inversion if and only if p is even, while Dpd contains inversion symmetry if and only if p is odd. There are, prisms, for each rational number p/q >2, with symmetry group Dph, antiprisms, for each rational number p/q > 3/2, with symmetry group Dpd if q is odd, Dph if q is even. If p/q is an integer, i. e. if q =1, an antiprism with p/q <2 is crossed or retrograde, its vertex figure resembles a bowtie. If p/q ≤ 3/2 no uniform antiprism can exist, as its vertex figure would have to violate the triangle inequality, Uniform polyhedron Prism Antiprism Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Philosophical Transactions of the Royal Society of London, P.175 Skilling, John, Uniform Compounds of Uniform Polyhedra, Mathematical Proceedings of the Cambridge Philosophical Society,79, 447–457, doi,10. 1017/S0305004100052440, MR0397554. Prisms and Antiprisms George W. Hart
42.
Louis Poinsot
–
Louis Poinsot was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of acting on a rigid body could be resolved into a single force. —Louis Poinsot, Théorie nouvelle de la rotation des corps Louis was born in Paris on 3 January 1777 and he attended the school of Lycée Louis-le-Grand for secondary preparatory education for entrance to the famous École Polytechnique. In October 1794, at age 17, he took the École Polytechnique entrance exam, a student there for two years, he left in 1797 to study at École des Ponts et Chaussées to become a civil engineer. Although now on course for the practical and secure professional study of engineering, he discovered his true passion. Poinsot thus left the École des Ponts et Chaussées and civil engineering to become a teacher at the secondary school Lycée Bonaparte in Paris. From there he became general of the Imperial University of France. He shared the post with another famous mathematician, Delambre, on 1 November 1809, Poinsot became assistant professor of analysis and mechanics at his old school the École Polytechnique. He also worked at the famous Bureau des Longitudes from 1839 until his death, on the death of Joseph-Louis Lagrange in 1813, Poinsot was elected to fill his place at the Académie des Sciences. In 1840 he became a member of the council of public instruction. In 1846 he was awarded an Officer of the Legion of Honor, Poinsot was elected Fellow of the Royal Society of London in 1858. He died in Paris on 5 December 1859, from the diary of Thomas Hirst,20 December 1857. Shook me kindly by the hand, bid me be seated and he is now between 60 and 70 years old, with silver silken hair neatly arranged on a fine intelligent head. He is tall and thin, but although he now stoops with age and he was loosely but neatly dressed in a large ample robe de chambre. His features are finely moulded — indeed everything about the man betokens good blood, I did not misunderstand a word, although he spoke always in a low tone, and now and then his voice dropped as if from weariness, but he never wandered from his point. The crater Poinsot on the moon is named after Poinsot, a street in Paris is called Rue Poinsot. Gustave Eiffel included Poinsot among the 72 names of prominent French scientists on plaques around the first stage of the Eiffel Tower, Poinsot was determined to publish only fully developed results and to present them with clarity and elegance. Consequently he left a rather limited body of work, in particular he devised, what is now known as, Poinsots construction
43.
Augustin Cauchy
–
Baron Augustin-Louis Cauchy FRS FRSE was a French mathematician who made pioneering contributions to analysis. He was one of the first to state and prove theorems of calculus rigorously and he almost singlehandedly founded complex analysis and the study of permutation groups in abstract algebra. A profound mathematician, Cauchy had an influence over his contemporaries. His writings range widely in mathematics and mathematical physics, more concepts and theorems have been named for Cauchy than for any other mathematician. Cauchy was a writer, he wrote approximately eight hundred research articles. Cauchy was the son of Louis François Cauchy and Marie-Madeleine Desestre, Cauchy married Aloise de Bure in 1818. She was a relative of the publisher who published most of Cauchys works. By her he had two daughters, Marie Françoise Alicia and Marie Mathilde, Cauchys father was a high official in the Parisian Police of the New Régime. He lost his position because of the French Revolution that broke out one month before Augustin-Louis was born, the Cauchy family survived the revolution and the following Reign of Terror by escaping to Arcueil, where Cauchy received his first education, from his father. After the execution of Robespierre, it was safe for the family to return to Paris, there Louis-François Cauchy found himself a new bureaucratic job, and quickly moved up the ranks. When Napoleon Bonaparte came to power, Louis-François Cauchy was further promoted, the famous mathematician Lagrange was also a friend of the Cauchy family. On Lagranges advice, Augustin-Louis was enrolled in the École Centrale du Panthéon, most of the curriculum consisted of classical languages, the young and ambitious Cauchy, being a brilliant student, won many prizes in Latin and Humanities. In spite of successes, Augustin-Louis chose an engineering career. In 1805 he placed second out of 293 applicants on this exam, one of the main purposes of this school was to give future civil and military engineers a high-level scientific and mathematical education. The school functioned under military discipline, which caused the young, nevertheless, he finished the Polytechnique in 1807, at the age of 18, and went on to the École des Ponts et Chaussées. He graduated in engineering, with the highest honors. After finishing school in 1810, Cauchy accepted a job as an engineer in Cherbourg. Cauchys first two manuscripts were accepted, the one was rejected
44.
Arthur Cayley
–
Arthur Cayley F. R. S. was a British mathematician. He helped found the modern British school of pure mathematics, as a child, Cayley enjoyed solving complex maths problems for amusement. He entered Trinity College, Cambridge, where he excelled in Greek, French, German and he worked as a lawyer for 14 years. He postulated the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial and he was the first to define the concept of a group in the modern way—as a set with a binary operation satisfying certain laws. Formerly, when mathematicians spoke of groups, they had meant permutation groups, cayleys theorem is named in honour of Cayley. Arthur Cayley was born in Richmond, London, England, on 16 August 1821 and his father, Henry Cayley, was a distant cousin of Sir George Cayley the aeronautics engineer innovator, and descended from an ancient Yorkshire family. He settled in Saint Petersburg, Russia, as a merchant and his mother was Maria Antonia Doughty, daughter of William Doughty. According to some writers she was Russian, but her fathers name indicates an English origin and his brother was the linguist Charles Bagot Cayley. Arthur spent his first eight years in Saint Petersburg, in 1829 his parents were settled permanently at Blackheath, near London. Arthur was sent to a private school, at age 14 he was sent to Kings College School. The schools master observed indications of genius and advised the father to educate his son not for his own business, as he had intended. At the unusually early age of 17 Cayley began residence at Trinity College, Cambridge, the cause of the Analytical Society had now triumphed, and the Cambridge Mathematical Journal had been instituted by Gregory and Robert Leslie Ellis. To this journal, at the age of twenty, Cayley contributed three papers, on subjects that had been suggested by reading the Mécanique analytique of Lagrange, cayleys tutor at Cambridge was George Peacock and his private coach was William Hopkins. He finished his course by winning the place of Senior Wrangler. His next step was to take the M. A. degree and he continued to reside at Cambridge University for four years, during which time he took some pupils, but his main work was the preparation of 28 memoirs to the Mathematical Journal. Because of the tenure of his fellowship it was necessary to choose a profession, like De Morgan, Cayley chose law. He made a specialty of conveyancing and it was while he was a pupil at the bar examination that he went to Dublin to hear Hamiltons lectures on quaternions. During this period of his life, extending over fourteen years, at Cambridge University the ancient professorship of pure mathematics is denominated by the Lucasian, and is the chair that had been occupied by Isaac Newton
45.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M