1.
Ecliptic
–
The ecliptic is the apparent path of the Sun on the celestial sphere, and is the basis for the ecliptic coordinate system. It also refers to the plane of this path, which is coplanar with the orbit of Earth around the Sun, the motions as described above are simplifications. Due to the movement of Earth around the Earth–Moon center of mass, due to further perturbations by the other planets of the Solar System, the Earth–Moon barycenter wobbles slightly around a mean position in a complex fashion. The ecliptic is actually the apparent path of the Sun throughout the course of a year, because Earth takes one year to orbit the Sun, the apparent position of the Sun also takes the same length of time to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day, again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun. The actual speed with which Earth orbits the Sun varies slightly during the year, for example, the Sun is north of the celestial equator for about 185 days of each year, and south of it for about 180 days. The variation of orbital speed accounts for part of the equation of time, if the equator is projected outward to the celestial sphere, forming the celestial equator, it crosses the ecliptic at two points known as the equinoxes. The Sun, in its apparent motion along the ecliptic, crosses the equator at these points, one from south to north. The crossing from south to north is known as the equinox, also known as the first point of Aries. The crossing from north to south is the equinox or descending node. Likewise, the ecliptic itself is not fixed, the gravitational perturbations of the other bodies of the Solar System cause a much smaller motion of the plane of Earths orbit, and hence of the ecliptic, known as planetary precession. The combined action of two motions is called general precession, and changes the position of the equinoxes by about 50 arc seconds per year. Once again, this is a simplification, periodic motions of the Moon and apparent periodic motions of the Sun cause short-term small-amplitude periodic oscillations of Earths axis, and hence the celestial equator, known as nutation. Obliquity of the ecliptic is the used by astronomers for the inclination of Earths equator with respect to the ecliptic. It is about 23. 4° and is currently decreasing 0.013 degrees per hundred years due to planetary perturbations, the angular value of the obliquity is found by observation of the motions of Earth and other planets over many years. From 1984, the Jet Propulsion Laboratorys DE series of computer-generated ephemerides took over as the ephemeris of the Astronomical Almanac. Obliquity based on DE200, which analyzed observations from 1911 to 1979, was calculated, jPLs fundamental ephemerides have been continually updated. J. Laskar computed an expression to order T10 good to 0″. 04/1000 years over 10,000 years, all of these expressions are for the mean obliquity, that is, without the nutation of the equator included

2.
Axial tilt
–
In astronomy, axial tilt, also known as obliquity, is the angle between an objects rotational axis and its orbital axis, or, equivalently, the angle between its equatorial plane and orbital plane. At an obliquity of zero, the two axes point in the direction, i. e. the rotational axis is perpendicular to the orbital plane. Over the course of an orbit, the obliquity usually does not change considerably, and this causes one pole to be directed more toward the Sun on one side of the orbit, and the other pole on the other side — the cause of the seasons on the Earth. Earths obliquity oscillates between 22.1 and 24.5 degrees on a 41, 000-year cycle, the mean obliquity is currently 23°26′13. 4″. There are two methods of specifying tilt. The IAU also uses the rule to define a positive pole for the purpose of determining orientation. Using this convention, Venus is tilted 177° and it is denoted by the Greek letter ε. Earth currently has a tilt of about 23. 4°. This value remains about the relative to a stationary orbital plane throughout the cycles of axial precession. But the ecliptic due to planetary perturbations, and the obliquity of the ecliptic is not a fixed quantity. At present, it is decreasing at a rate of about 47″ per century, Earths obliquity may have been reasonably accurately measured as early as 1100 BC in India and China. The ancient Greeks had good measurements of the obliquity since about 350 BC, about 830 AD, the Caliph Al-Mamun of Baghdad directed his astronomers to measure the obliquity, and the result was used in the Arab world for many years. It was widely believed, during the Middle Ages, that both precession and Earths obliquity oscillated around a value, with a period of 672 years. Earths axis remains tilted in the direction with reference to the background stars throughout a year. This means that one pole will be directed away from the Sun at one side of the orbit and this is the cause of Earths seasons. Summer occurs in the Northern hemisphere when the pole is directed toward the Sun. Variations in Earths axial tilt can influence the seasons and is likely a factor in climate change. The exact angular value of the obliquity is found by observation of the motions of Earth, from 1984, the Jet Propulsion Laboratorys DE series of computer-generated ephemerides took over as the fundamental ephemeris of the Astronomical Almanac

3.
Rotation
–
A rotation is a circular movement of an object around a center of rotation. A three-dimensional object always rotates around a line called a rotation axis. If the axis passes through the center of mass, the body is said to rotate upon itself. A rotation about a point, e. g. the Earth about the Sun, is called a revolution or orbital revolution. The axis is called a pole, mathematically, a rotation is a rigid body movement which, unlike a translation, keeps a point fixed. This definition applies to rotations within both two and three dimensions All rigid body movements are rotations, translations, or combinations of the two, a rotation is simply a progressive radial orientation to a common point. That common point lies within the axis of that motion, the axis is 90 degrees perpendicular to the plane of the motion. If the axis of the rotation lies external of the body in question then the body is said to orbit, there is no fundamental difference between a “rotation” and an “orbit” and or spin. The key distinction is simply where the axis of the rotation lies and this distinction can be demonstrated for both “rigid” and “non rigid” bodies. If a rotation around a point or axis is followed by a rotation around the same point/axis. The reverse of a rotation is also a rotation, thus, the rotations around a point/axis form a group. However, a rotation around a point or axis and a rotation around a different point/axis may result in something other than a rotation, Rotations around the x, y and z axes are called principal rotations. Rotation around any axis can be performed by taking a rotation around the x axis, followed by a rotation around the y axis and that is to say, any spatial rotation can be decomposed into a combination of principal rotations. In flight dynamics, the rotations are known as yaw, pitch. This terminology is used in computer graphics. In astronomy, rotation is an observed phenomenon. Stars, planets and similar bodies all spin around on their axes, the rotation rate of planets in the solar system was first measured by tracking visual features. Stellar rotation is measured through Doppler shift or by tracking active surface features and this rotation induces a centrifugal acceleration in the reference frame of the Earth which slightly counteracts the effect of gravity the closer one is to the equator

4.
Great circle
–
A great circle, also known as an orthodrome or Riemannian circle, of a sphere is the intersection of the sphere and a plane that passes through the center point of the sphere. This partial case of a circle of a sphere is opposed to a circle, the intersection of the sphere. Any diameter of any great circle coincides with a diameter of the sphere, and therefore all great circles have the same circumference as each other, a great circle is the largest circle that can be drawn on any given sphere. Every circle in Euclidean 3-space is a circle of exactly one sphere. For most pairs of points on the surface of a sphere, there is a great circle through the two points. The exception is a pair of points, for which there are infinitely many great circles. The minor arc of a circle between two points is the shortest surface-path between them. In this sense, the arc is analogous to “straight lines” in Euclidean geometry. The length of the arc of a great circle is taken as the distance between two points on a surface of a sphere in Riemannian geometry. The great circles are the geodesics of the sphere, in higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space Rn+1. To prove that the arc of a great circle is the shortest path connecting two points on the surface of a sphere, one can apply calculus of variations to it. Consider the class of all paths from a point p to another point q. Introduce spherical coordinates so that p coincides with the north pole. Any curve on the sphere that does not intersect either pole, except possibly at the endpoints, can be parametrized by θ = θ, ϕ = ϕ, a ≤ t ≤ b provided we allow φ to take on arbitrary real values. The infinitesimal arc length in these coordinates is d s = r θ ′2 + ϕ ′2 sin 2 θ d t. So the length of a curve γ from p to q is a functional of the curve given by S = r ∫ a b θ ′2 + ϕ ′2 sin 2 θ d t. Note that S is at least the length of the meridian from p to q, S ≥ r ∫ a b | θ ′ | d t ≥ r | θ − θ |. Since the starting point and ending point are fixed, S is minimized if and only if φ =0, so the curve must lie on a meridian of the sphere φ = φ0 = constant

5.
Celestial sphere
–
In astronomy and navigation, the celestial sphere is an imaginary sphere of arbitrarily large radius, concentric with Earth. All objects in the sky can be thought of as projected upon the inside surface of the celestial sphere. The celestial sphere is a tool for spherical astronomy, allowing observers to plot positions of objects in the sky when their distances are unknown or unimportant. Because astronomical objects are at such distances, casual observation of the sky offers no information on the actual distances. All objects seem equally far away, as if fixed to the inside of a sphere of large but unknown radius, which rotates from east to west overhead while underfoot, the celestial sphere can be considered to be infinite in radius. This means any point within it, including that occupied by the observer, all parallel planes will seem to intersect the sphere in a coincident great circle. On an infinite-radius celestial sphere, all observers see the things in the same direction. For some objects, this is over-simplified, objects which are relatively near to the observer will seem to change position against the distant celestial sphere if the observer moves far enough, say, from one side of the Earth to the other. This effect, known as parallax, can be represented as an offset from a mean position. The celestial sphere can be considered to be centered at the Earths center, the Suns center, or any convenient location. Individual observers can work out their own small offsets from the mean positions, in many cases in astronomy, the offsets are insignificant. The celestial sphere can thus be thought of as a kind of astronomical shorthand, for many rough uses, this position, as seen from the Earths center, is adequate. This greatly abbreviates the amount of detail necessary in such almanacs and these concepts are important for understanding celestial coordinate systems – frameworks for measuring the positions of objects in the sky. Certain reference lines and planes on Earth, when projected onto the celestial sphere and these include the Earths equator, axis, and the Earths orbit. At their intersections with the sphere, these form the celestial equator, the north and south celestial poles. As the celestial sphere is considered infinite in radius, all observers see the celestial equator, celestial poles, from these bases, directions toward objects in the sky can be quantified by constructing celestial coordinate systems. Similar to terrestrial longitude and latitude, the coordinate system specifies positions relative to the celestial equator and celestial poles. The ecliptic coordinate system specifies positions relative to the Earths orbit, besides the equatorial and ecliptic systems, some other celestial coordinate systems, such as the galactic coordinate system, are more appropriate for particular purposes

6.
Equator
–
The Equator usually refers to an imaginary line on the Earths surface equidistant from the North Pole and South Pole, dividing the Earth into the Northern Hemisphere and Southern Hemisphere. The Equator is about 40,075 kilometres long, some 78. 7% lies across water and 21. 3% over land, other planets and astronomical bodies have equators similarly defined. Generally, an equator is the intersection of the surface of a sphere with the plane that is perpendicular to the spheres axis of rotation. The latitude of the Earths equator is by definition 0° of arc, the equator is the only line of latitude which is also a great circle — that is, one whose plane passes through the center of the globe. The plane of Earths equator when projected outwards to the celestial sphere defines the celestial equator, in the cycle of Earths seasons, the plane of the equator passes through the Sun twice per year, at the March and September equinoxes. To an observer on the Earth, the Sun appears to travel North or South over the equator at these times, light rays from the center of the Sun are perpendicular to the surface of the Earth at the point of solar noon on the Equator. Locations on the Equator experience the quickest sunrises and sunsets because the sun moves nearly perpendicular to the horizon for most of the year. The Earth bulges slightly at the Equator, the diameter of the Earth is 12,750 kilometres. Because the Earth spins to the east, spacecraft must also launch to the east to take advantage of this Earth-boost of speed, seasons result from the yearly revolution of the Earth around the Sun and the tilt of the Earths axis relative to the plane of revolution. During the year the northern and southern hemispheres are inclined toward or away from the sun according to Earths position in its orbit, the hemisphere inclined toward the sun receives more sunlight and is in summer, while the other hemisphere receives less sun and is in winter. At the equinoxes, the Earths axis is not tilted toward the sun, instead it is perpendicular to the sun meaning that the day is about 12 hours long, as is the night, across the whole of the Earth. Near the Equator there is distinction between summer, winter, autumn, or spring. The temperatures are usually high year-round—with the exception of high mountains in South America, the temperature at the Equator can plummet during rainstorms. In many tropical regions people identify two seasons, the wet season and the dry season, but many places close to the Equator are on the oceans or rainy throughout the year, the seasons can vary depending on elevation and proximity to an ocean. The Equator lies mostly on the three largest oceans, the Pacific Ocean, the Atlantic Ocean, and the Indian Ocean. The highest point on the Equator is at the elevation of 4,690 metres, at 0°0′0″N 77°59′31″W and this is slightly above the snow line, and is the only place on the Equator where snow lies on the ground. At the Equator the snow line is around 1,000 metres lower than on Mount Everest, the Equator traverses the land of 11 countries, it also passes through two island nations, though without making a landfall in either. Starting at the Prime Meridian and heading eastwards, the Equator passes through, Despite its name, however, its island of Annobón is 155 km south of the Equator, and the rest of the country lies to the north

7.
Earth
–
Earth, otherwise known as the World, or the Globe, is the third planet from the Sun and the only object in the Universe known to harbor life. It is the densest planet in the Solar System and the largest of the four terrestrial planets, according to radiometric dating and other sources of evidence, Earth formed about 4.54 billion years ago. Earths gravity interacts with objects in space, especially the Sun. During one orbit around the Sun, Earth rotates about its axis over 365 times, thus, Earths axis of rotation is tilted, producing seasonal variations on the planets surface. The gravitational interaction between the Earth and Moon causes ocean tides, stabilizes the Earths orientation on its axis, Earths lithosphere is divided into several rigid tectonic plates that migrate across the surface over periods of many millions of years. About 71% of Earths surface is covered with water, mostly by its oceans, the remaining 29% is land consisting of continents and islands that together have many lakes, rivers and other sources of water that contribute to the hydrosphere. The majority of Earths polar regions are covered in ice, including the Antarctic ice sheet, Earths interior remains active with a solid iron inner core, a liquid outer core that generates the Earths magnetic field, and a convecting mantle that drives plate tectonics. Within the first billion years of Earths history, life appeared in the oceans and began to affect the Earths atmosphere and surface, some geological evidence indicates that life may have arisen as much as 4.1 billion years ago. Since then, the combination of Earths distance from the Sun, physical properties, in the history of the Earth, biodiversity has gone through long periods of expansion, occasionally punctuated by mass extinction events. Over 99% of all species that lived on Earth are extinct. Estimates of the number of species on Earth today vary widely, over 7.4 billion humans live on Earth and depend on its biosphere and minerals for their survival. Humans have developed diverse societies and cultures, politically, the world has about 200 sovereign states, the modern English word Earth developed from a wide variety of Middle English forms, which derived from an Old English noun most often spelled eorðe. It has cognates in every Germanic language, and their proto-Germanic root has been reconstructed as *erþō, originally, earth was written in lowercase, and from early Middle English, its definite sense as the globe was expressed as the earth. By early Modern English, many nouns were capitalized, and the became the Earth. More recently, the name is simply given as Earth. House styles now vary, Oxford spelling recognizes the lowercase form as the most common, another convention capitalizes Earth when appearing as a name but writes it in lowercase when preceded by the. It almost always appears in lowercase in colloquial expressions such as what on earth are you doing, the oldest material found in the Solar System is dated to 4. 5672±0.0006 billion years ago. By 4. 54±0.04 Gya the primordial Earth had formed, the formation and evolution of Solar System bodies occurred along with the Sun