Cepheid variable
A Cepheid variable is a type of star that pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude. A strong direct relationship between a Cepheid variable's luminosity and pulsation period established Cepheids as important indicators of cosmic benchmarks for scaling galactic and extragalactic distances; this robust characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. This discovery allows one to know the true luminosity of a Cepheid by observing its pulsation period; this in turn allows one to determine the distance to the star, by comparing its known luminosity to its observed brightness. The term Cepheid originates from Delta Cephei in the constellation Cepheus, identified by John Goodricke in 1784, the first of its type to be so identified. Cepheid variables are divided into two subclasses which exhibit markedly different masses and evolutionary histories: classical Cepheids and type II Cepheids.
Delta Scuti variables are A class stars on or near the main sequence at the lower end of the instability strip and were referred to as dwarf Cepheids. RR Lyrae variables have short periods and lie on the instability strip where it crosses the horizontal branch. Delta Scuti variables and RR Lyrae variables are not treated with Cepheid variables although their pulsations originate with the same helium ionisation kappa mechanism. Classical Cepheids undergo pulsations with regular periods on the order of days to months. Classical Cepheids are Population I variable stars which are 4–20 times more massive than the Sun, up to 100,000 times more luminous; these Cepheids are yellow bright giants and supergiants of spectral class F6 – K2 and their radii change by millions of kilometers during a pulsation cycle. Classical Cepheids are used to determine distances to galaxies within the Local Group and beyond, are a means by which the Hubble constant can be established. Classical Cepheids have been used to clarify many characteristics of our galaxy, such as the Sun's height above the galactic plane and the Galaxy's local spiral structure.
A group of classical Cepheids with small amplitudes and sinusoidal light curves are separated out as Small Amplitude Cepheids or s-Cepheids, many of them pulsating in the first overtone. Type II Cepheids are population II variable stars which pulsate with periods between 1 and 50 days. Type II Cepheids are metal-poor, low mass objects. Type II Cepheids are divided into several subgroups by period. Stars with periods between 1 and 4 days are of the BL Her subclass, 10–20 days belong to the W Virginis subclass, stars with periods greater than 20 days belong to the RV Tauri subclass. Type II Cepheids are used to establish the distance to the Galactic Center, globular clusters, galaxies. A group of pulsating stars on the instability strip have periods of less than 2 days, similar to RR Lyrae variables but with higher luminosities. Anomalous Cepheid variables have masses higher than type II Cepheids, RR Lyrae variables, our sun, it is unclear whether they are young stars on a "turned-back" horizontal branch, blue stragglers formed through mass transfer in binary systems, or a mix of both.
A small proportion of Cepheid variables have been observed to pulsate in two modes at the same time the fundamental and first overtone the second overtone. A small number pulsate in three modes, or an unusual combination of modes including higher overtones. On September 10, 1784, Edward Pigott detected the variability of Eta Aquilae, the first known representative of the class of classical Cepheid variables. However, the eponymous star for classical Cepheids is Delta Cephei, discovered to be variable by John Goodricke a few months later. A relationship between the period and luminosity for classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt in an investigation of thousands of variable stars in the Magellanic Clouds, she published it in 1912 with further evidence. In 1913, Ejnar Hertzsprung attempted to find distances to 13 Cepheids using the motion through the sky, his research would require revision, however. In 1915, Harlow Shapley used Cepheids to place initial constraints on the size and shape of the Milky Way, of the placement of our Sun within it.
In 1924, Edwin Hubble established the distance to classical Cepheid variables in the Andromeda Galaxy, until known as the Andromeda Nebula, showed that the variables were not members of the Milky Way. Hubble's finding settled the question raised in the "Great Debate" of whether the Milky Way represented the entire Universe or was one of numerous galaxies in the Universe. In 1929, Hubble and Milton L. Humason formulated what is now known as Hubble's Law by combining Cepheid distances to several galaxies with Vesto Slipher's measurements of the speed at which those galaxies recede from us, they discovered. However, the expansion of the Universe was posited several years before by Georges Lemaître. In the mid 20th century, significant problems with the astronomical distance scale were resolved by dividing the Cepheids into different classes with different properties. In the 1940s, Walter Baade recognized two separate populations of Cepheids. Classical Cepheids are younger and more massive population I stars, whereas type II Cepheids are older fainter Population II stars.
Classical Cepheids and type
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim
Metallicity
In astronomy, metallicity is used to describe the abundance of elements present in an object that are heavier than hydrogen or helium. Most of the physical matter in the Universe is in the form of hydrogen and helium, so astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium"; this usage is distinct from the usual physical definition of a solid metal. For example and nebulae with high abundances of carbon, nitrogen and neon are called "metal-rich" in astrophysical terms though those elements are non-metals in chemistry; the presence of heavier elements hails from stellar nucleosynthesis, the theory that the majority of elements heavier than hydrogen and helium in the Universe are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing recycling materials for the birth of new stars, it follows that older generations of stars, which formed in the metal-poor early Universe have lower metallicities than those of younger generations, which formed in a more metal-rich Universe.
Observed changes in the chemical abundances of different types of stars, based on the spectral peculiarities that were attributed to metallicity, led astronomer Walter Baade in 1944 to propose the existence of two different populations of stars. These became known as Population I and Population II stars. A third stellar population was introduced in 1978, known as Population III stars; these metal-poor stars were theorised to have been the "first-born" stars created in the Universe. Astronomers use several different methods to describe and approximate metal abundances, depending on the available tools and the object of interest; some methods include determining the fraction of mass, attributed to gas versus metals, or measuring the ratios of the number of atoms of two different elements as compared to the ratios found in the Sun. Stellar composition is simply defined by the parameters X, Y and Z. Here X is the mass fraction of hydrogen, Y is the mass fraction of helium, Z is the mass fraction of all the remaining chemical elements.
Thus X + Y + Z = 1.00. In most stars, nebulae, H II regions, other astronomical sources and helium are the two dominant elements; the hydrogen mass fraction is expressed as X ≡ m H / M, where M is the total mass of the system, m H is the fractional mass of the hydrogen it contains. The helium mass fraction is denoted as Y ≡ m He / M; the remainder of the elements are collectively referred to as "metals", the metallicity—the mass fraction of elements heavier than helium—can be calculated as Z = ∑ i > He m i M = 1 − X − Y. For the surface of the Sun, these parameters are measured to have the following values: Due to the effects of stellar evolution, neither the initial composition nor the present day bulk composition of the Sun is the same as its present-day surface composition; the overall stellar metallicity is defined using the total iron content of the star, as iron is among the easiest to measure with spectral observations in the visible spectrum. The abundance ratio is defined as the logarithm of the ratio of a star's iron abundance compared to that of the Sun and is expressed thus: = log 10 star − log 10 sun, where N Fe and N H are the number of iron and hydrogen atoms per unit of volume respectively.
The unit used for metallicity is the dex, contraction of "decimal exponent". By this formulation, stars with a higher metallicity than the Sun have a positive logarithmic value, whereas those with a lower metallicity than the Sun have a negative value. For example, stars with a value of +1 have 10 times the metallicity of the Sun. Young Population I stars have higher iron-to-hydrogen ratios than older Population II stars. Primordial Population III stars are estimated to have a metallicity of less than −6.0, that is, less than a millionth of the abundance of iron in the Sun. The same notation is used to express variations in abundances between other the individual elements as compared to solar proportions. For example, the notati
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
Orbital eccentricity
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.
For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".
"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.
Ve
Proper motion
Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system are given in the direction of right ascension and of declination, their combined value is computed as the total proper motion. It has dimensions of angle per time arcseconds per year or milliarcseconds per year. Knowledge of the proper motion and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, by coordinate transformation, the motion in respect to the Milky Way. Proper motion is not "proper", because it includes a component due to the motion of the Solar System itself. Over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time.
Ursa Major or Crux, for example, looks nearly the same now. However, precise long-term observations show that the constellations change shape, albeit slowly, that each star has an independent motion; this motion is caused by the movement of the stars relative to the Solar System. The Sun travels in a nearly circular orbit about the center of the Milky Way at a speed of about 220 km/s at a radius of 8 kPc from the center, which can be taken as the rate of rotation of the Milky Way itself at this radius; the proper motion is a two-dimensional vector and is thus defined by two quantities: its position angle and its magnitude. The first quantity indicates the direction of the proper motion on the celestial sphere, the second quantity is the motion's magnitude expressed in arcseconds per year or milliarcsecond per year. Proper motion may alternatively be defined by the angular changes per year in the star's right ascension and declination, using a constant epoch in defining these; the components of proper motion by convention are arrived at.
Suppose an object moves from coordinates to coordinates in a time Δt. The proper motions are given by: μ α = α 2 − α 1 Δ t, μ δ = δ 2 − δ 1 Δ t; the magnitude of the proper motion μ is given by the Pythagorean theorem: μ 2 = μ δ 2 + μ α 2 ⋅ cos 2 δ, μ 2 = μ δ 2 + μ α ∗ 2, where δ is the declination. The factor in cos2δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cosδ, for example, zero at the pole. Thus, the component of velocity parallel to the equator corresponding to a given angular change in α is smaller the further north the object's location; the change μα, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", μδ the "proper motion in declination". If the proper motion in right ascension has been converted by cosδ, the result is designated μα*. For example, the proper motion results in right ascension in the Hipparcos Catalogue have been converted. Hence, the individual proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions.
The position angle θ is related to these components by: μ sin θ = μ α cos δ = μ α ∗, μ cos θ = μ δ. Motions in equatorial coordinates can be converted to motions in galactic coordinates. For the majority of stars seen in the sky, the observed proper motions are small and unremarkable; such stars are either faint or are distant, have changes of below 10 milliarcseconds per year, do not appear to move appreciably over many millennia. A few do have significant motions, are called high-proper motion stars. Motions can be in seemingly random directions. Two or more stars, double stars or open star clusters, which are moving in similar directions, exhibit so-called shared or common proper motion, suggesting they may be gravitationally attached or share similar motion in space. Barnard's Star has the largest proper motion of all stars, moving at 10.3 seconds of arc per year. L