1.
Unit prefix
–
A unit prefix is a specifier or mnemonic that is prepended to units of measurement to indicate multiples or fractions of the units. Units of various sizes are formed by the use of such prefixes. The prefixes of the system, such as kilo and milli. In information technology it is common to use binary prefixes, which are based on powers of two, historically, many prefixes have been used or proposed by various sources, but only a narrow set has been recognised by standards organisations. The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple, each prefix has a unique symbol that is prepended to the unit symbol. Some of the date back to the introduction of the metric system in the 1790s, but new prefixes have been added. The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units, although formerly in use, the SI disallows combining prefixes, the microkilogram or centimillimetre, for example, are not permitted. Prefixes corresponding to powers of one thousand are usually preferred, however, units such as the hectopascal, hectare, decibel, centimetre, in general, prefixes are used with any metric unit, but may also be used with non-metric units. Some combinations, however, are more common than others, the choice of prefixes for a given unit has often arisen by convenience of use and historical developments. Unit prefixes that are larger or smaller than encountered in practice are seldom used. In most contexts only a few, the most common, combinations are established, for example, prefixes for multiples greater than one thousand are rarely applied to the gram or metre. Some prefixes used in versions of the metric system are no longer used. The prefix myrio- was a spelling variant for myria-, as proposed by Thomas Young. A binary prefix indicates multiplication by a power of two, the tenth power of 2 has the value 1024, which is close to 1000. This has prompted the use of the prefixes kilo, mega, and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information. Units of information are not covered in the International System of Units, for example, in citations of main memory or RAM capacity, kilobyte, megabyte and gigabyte customarily mean 1024,1048576 and 1073741824 bytes respectively. In the specifications of hard drive capacities and network transmission bit rates, on the other hand, decimal prefixes. For example, a 500-gigabyte hard drive holds 500 billion bytes, the ambiguity has led to some confusion and even of lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller
2.
Fraction (mathematics)
–
A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator displayed above a line, numerators and denominators are also used in fractions that are not common, including compound fractions, complex fractions, and mixed numerals. The numerator represents a number of parts, and the denominator. For example, in the fraction 3/4, the numerator,3, tells us that the fraction represents 3 equal parts, the picture to the right illustrates 34 or ¾ of a cake. Fractional numbers can also be written without using explicit numerators or denominators, by using decimals, percent signs, an integer such as the number 7 can be thought of as having an implicit denominator of one,7 equals 7/1. Other uses for fractions are to represent ratios and to represent division, thus the fraction ¾ is also used to represent the ratio 3,4 and the division 3 ÷4. The test for a number being a number is that it can be written in that form. In a fraction, the number of parts being described is the numerator. Informally, they may be distinguished by placement alone but in formal contexts they are separated by a fraction bar. The fraction bar may be horizontal, oblique, or diagonal and these marks are respectively known as the horizontal bar, the slash or stroke, the division slash, and the fraction slash. In typography, horizontal fractions are known as en or nut fractions and diagonal fractions as em fractions. The denominators of English fractions are expressed as ordinal numbers. When the denominator is 1, it may be expressed in terms of wholes but is commonly ignored. When the numerator is one, it may be omitted, a fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. Fractions should always be hyphenated when used as adjectives, alternatively, a fraction may be described by reading it out as the numerator over the denominator, with the denominator expressed as a cardinal number. The term over is used even in the case of solidus fractions, Fractions with large denominators that are not powers of ten are often rendered in this fashion while those with denominators divisible by ten are typically read in the normal ordinal fashion. A simple fraction is a number written as a/b or a b
3.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0
4.
Binary number
–
The base-2 system is a positional notation with a radix of 2. Because of its implementation in digital electronic circuitry using logic gates. Each digit is referred to as a bit, the modern binary number system was devised by Gottfried Leibniz in 1679 and appears in his article Explication de lArithmétique Binaire. Systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Leibniz was specifically inspired by the Chinese I Ching. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions and Horus-Eye fractions, the method used for ancient Egyptian multiplication is also closely related to binary numbers. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, the I Ching dates from the 9th century BC in China. The binary notation in the I Ching is used to interpret its quaternary divination technique and it is based on taoistic duality of yin and yang. Eight trigrams and a set of 64 hexagrams, analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou Dynasty of ancient China. The Song Dynasty scholar Shao Yong rearranged the hexagrams in a format that resembles modern binary numbers, the Indian scholar Pingala developed a binary system for describing prosody. He used binary numbers in the form of short and long syllables, Pingalas Hindu classic titled Chandaḥśāstra describes the formation of a matrix in order to give a unique value to each meter. The binary representations in Pingalas system increases towards the right, the residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450. Slit drums with binary tones are used to encode messages across Africa, sets of binary combinations similar to the I Ching have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy. The base-2 system utilized in geomancy had long been applied in sub-Saharan Africa. Leibnizs system uses 0 and 1, like the modern binary numeral system, Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own beliefs as a Christian. Binary numerals were central to Leibnizs theology and he believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing. Is not easy to impart to the pagans, is the ex nihilo through Gods almighty power. In 1854, British mathematician George Boole published a paper detailing an algebraic system of logic that would become known as Boolean algebra
5.
Metric system
–
The metric system is an internationally agreed decimal system of measurement. Many sources also cite Liberia and Myanmar as the other countries not to have done so. Although the originators intended to devise a system that was accessible to all. Control of the units of measure was maintained by the French government until 1875, when it was passed to an intergovernmental organisation. From its beginning, the features of the metric system were the standard set of interrelated base units. These base units are used to larger and smaller units that could replace a huge number of other units of measure in existence. Although the system was first developed for use, the development of coherent units of measure made it particularly suitable for science. Although the metric system has changed and developed since its inception, designed for transnational use, it consisted of a basic set of units of measurement, now known as base units. At the outbreak of the French Revolution in 1789, most countries, the metric system was designed to be universal—in the words of the French philosopher Marquis de Condorcet it was to be for all people for all time. However, these overtures failed and the custody of the metric system remained in the hands of the French government until 1875. In languages where the distinction is made, unit names are common nouns, the concept of using consistent classical names for the prefixes was first proposed in a report by the Commission on Weights and Measures in May 1793. The prefix kilo, for example, is used to multiply the unit by 1000, thus the kilogram and kilometre are a thousand grams and metres respectively, and a milligram and millimetre are one thousandth of a gram and metre respectively. These relations can be written symbolically as,1 mg =0, however,1935 extensions to the prefix system did not follow this convention, the prefixes nano- and micro-, for example have Greek roots. During the 19th century the prefix myria-, derived from the Greek word μύριοι, was used as a multiplier for 10000, prefixes are not usually used to indicate multiples of a second greater than 1, the non-SI units of minute, hour and day are used instead. On the other hand, prefixes are used for multiples of the unit of volume. The base units used in the system must be realisable. Each of the units in SI is accompanied by a mise en pratique published by the BIPM that describes in detail at least one way in which the base unit can be measured. In practice, such realisation is done under the auspices of a mutual acceptance arrangement, in the original version of the metric system the base units could be derived from a specified length and the weight of a specified volume of pure water
6.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version
7.
International Bureau of Weights and Measures
–
The organisation is usually referred to by its French initialism, BIPM. The BIPM reports to the International Committee for Weights and Measures and these organizations are also commonly referred to by their French initialisms. The BIPM was created on 20 May 1875, following the signing of the Metre Convention, under the authority of the Metric Convention, the BIPM helps to ensure uniformity of SI weights and measures around the world. It does so through a series of committees, whose members are the national metrology laboratories of the Conventions member states. The BIPM carries out measurement-related research and it takes part in and organises international comparisons of national measurement standards and performs calibrations for member states. The BIPM has an important role in maintaining accurate worldwide time of day and it combines, analyses, and averages the official atomic time standards of member nations around the world to create a single, official Coordinated Universal Time. The BIPM is also the keeper of the prototype of the kilogram. Metrologia Institute for Reference Materials and Measurements International Organization for Standardization National Institute of Standards and Technology Official website
8.
International System of Quantities
–
The International System of Quantities is a system based on seven base quantities, length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity. Other quantities such as area, pressure, and electrical resistance are derived from these base quantities by clear, the ISQ defines the quantities that are measured with the SI units and also includes many other quantities in modern science and technology. The ISQ is defined in the international standard ISO/IEC80000, and was finalised in 2009 with the publication of ISO 80000-1. The 14 parts of ISO/IEC80000 define quantities used in disciplines such as mechanics, light, acoustics, electromagnetism, information technology, chemistry, mathematics. A base quantity is a quantity in a subset of a given system of quantities that is chosen by convention. The ISQ defines seven base quantities, the symbols for them, as for other quantities, are written in italics. The dimension of a quantity does not include magnitude or units. The conventional symbolic representation of the dimension of a quantity is a single upper-case letter in roman sans-serif type. A derived quantity is a quantity in a system of quantities that is a defined in terms of the quantities of that system. The ISQ defines many derived quantities, the conventional symbolic representation of the dimension of a derived quantity is the product of powers of the dimensions of the base quantities according to the definition of the derived quantity. The dimension of a quantity is denoted by L a M b T c I d Θ e N f J g, the symbol may be omitted if its exponent is zero. For example, in the ISQ, the quantity dimension of velocity is denoted L T −1, the following table lists some quantities defined by the ISQ. A quantity of one is historically known as a dimensionless quantity, all its dimensional exponents are zero. Such a quantity can be regarded as a quantity in the form of the ratio of two quantities of the same dimension. In the ISQ, the level of a quantity Q is defined as logr, an example of level is sound pressure level. All levels of the ISQ are derived quantities, B. N. Taylor, Ambler Thompson, International System of Units, National Institute of Standards and Technology 2008 edition, ISBN 1-4379-1558-2
9.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used
10.
Long and short scales
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions
11.
Long scale
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions
12.
Orders of magnitude (numbers)
–
This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantity and probabilities. Mathematics – Writing, Approximately 10−183,800 is a rough first estimate of the probability that a monkey, however, taking punctuation, capitalization, and spacing into account, the actual probability is far lower, around 10−360,783. Computing, The number 1×10−6176 is equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE decimal floating-point value, Computing, The number 6. 5×10−4966 is approximately equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE floating-point value. Computing, The number 3. 6×10−4951 is approximately equal to the smallest positive non-zero value that can be represented by a 80-bit x86 double-extended IEEE floating-point value. Computing, The number 1×10−398 is equal to the smallest positive non-zero value that can be represented by a double-precision IEEE decimal floating-point value, Computing, The number 4. 9×10−324 is approximately equal to the smallest positive non-zero value that can be represented by a double-precision IEEE floating-point value. Computing, The number 1×10−101 is equal to the smallest positive non-zero value that can be represented by a single-precision IEEE decimal floating-point value, Mathematics, The probability in a game of bridge of all four players getting a complete suit is approximately 4. 47×10−28. ISO, yocto- ISO, zepto- Mathematics, The probability of matching 20 numbers for 20 in a game of keno is approximately 2.83 × 10−19. ISO, atto- Mathematics, The probability of rolling snake eyes 10 times in a row on a pair of dice is about 2. 74×10−16. ISO, micro- Mathematics – Poker, The odds of being dealt a flush in poker are 649,739 to 1 against. Mathematics – Poker, The odds of being dealt a flush in poker are 72,192 to 1 against. Mathematics – Poker, The odds of being dealt a four of a kind in poker are 4,164 to 1 against, for a probability of 2.4 × 10−4. ISO, milli- Mathematics – Poker, The odds of being dealt a full house in poker are 693 to 1 against, for a probability of 1.4 × 10−3. Mathematics – Poker, The odds of being dealt a flush in poker are 507.8 to 1 against, Mathematics – Poker, The odds of being dealt a straight in poker are 253.8 to 1 against, for a probability of 4 × 10−3. Physics, α =0.007297352570, the fine-structure constant, ISO, deci- Mathematics – Poker, The odds of being dealt only one pair in poker are about 5 to 2 against, for a probability of 0.42. Demography, The population of Monowi, a village in Nebraska. Mathematics, √2 ≈1.414213562373095489, the ratio of the diagonal of a square to its side length. Mathematics, φ ≈1.618033988749895848, the golden ratio Mathematics, the number system understood by most computers, human scale, There are 10 digits on a pair of human hands, and 10 toes on a pair of human feet. Mathematics, The number system used in life, the decimal system, has 10 digits,0,1,2,3,4,5,6,7,8,9
13.
1,000,000,000
–
1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. One billion can also be written as b or bn, in scientific notation, it is written as 1 ×109. The SI prefix giga indicates 1,000,000,000 times the base unit, one billion years may be called eon in astronomy and geology. Previously in British English, the word billion referred exclusively to a million millions, however, this is no longer as common as earlier, and the word has been used to mean one thousand million for some time. The alternative term one thousand million is used in the U. K. or countries such as Spain that uses one thousand million as one million million constitutes a billion. The worded figure, as opposed to the figure is used to differentiate between one thousand million or one billion. The term milliard can also be used to refer to 1,000,000,000, whereas milliard is seldom used in English, in the South Asian numbering system, it is known as 100 crore or 1 Arab. 1000000007 – smallest prime number with 10 digits,1023456789 – smallest pandigital number in base 10. 1026753849 – smallest pandigital square that includes 0,1073741824 –2301073807359 – 14th Kynea number. 1162261467 –3191220703125 –513 1232922769- 35113^2 Centered hexagonal number,1234567890 – pandigital number with the digits in order. 1882341361 – The least prime whose reversal is both square and triangular,1977326743 –7112147483647 – 8th Mersenne prime and the largest signed 32-bit integer. 2147483648 –2312176782336 –6122214502422 – 6th primary pseudoperfect number,2357947691 –1192971215073 – 11th Fibonacci prime. 3405691582 – hexadecimal CAFEBABE, used as a placeholder in programming,3405697037 – hexadecimal CAFED00D, used as a placeholder in programming. 3735928559 – hexadecimal DEADBEEF, used as a placeholder in programming,3486784401 –3204294836223 – 16th Carol number. 4294967291 – Largest prime 32-bit unsigned integer,4294967295 – Maximum 32-bit unsigned integer, perfect totient number, product of the five prime Fermat numbers. 4294967296 –2324294967297 – the first composite Fermat number,6103515625 –5146210001000 – only self-descriptive number in base 10. 6975757441 –1786983776800 – 15th colossally abundant number, 15th superior highly composite number 7645370045 – 27th Pell number,8589934592 –2339043402501 – 25th Motzkin number. 9814072356 – largest square pandigital number, largest pandigital pure power,9876543210 – largest number without redundant digits
14.
1,000,000
–
One million or one thousand thousand is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione, from mille, thousand and it is commonly abbreviated as m or M, further MM, mm, or mn in financial contexts. In scientific notation, it is written as 1×106 or 106, physical quantities can also be expressed using the SI prefix mega, when dealing with SI units, for example,1 megawatt equals 1,000,000 watts. The meaning of the word million is common to the scale and long scale numbering systems, unlike the larger numbers. Information, Not counting spaces, the text printed on 136 pages of an Encyclopædia Britannica, length, There are one million millimeters in a kilometer, and roughly a million sixteenths of an inch in a mile. A typical car tire might rotate a million times in a 1, 200-mile trip, fingers, If the width of a human finger is 2.2 cm, then a million fingers lined up would cover a distance of 22 km. If a person walks at a speed of 4 km/h, it would take approximately five. A city lot 70 by 100 feet is about a million square inches, volume, The cube root of one million is only one hundred, so a million objects or cubic units is contained in a cube only a hundred objects or linear units on a side. A million grains of salt or granulated sugar occupies only about 64 ml. One million cubic inches would be the volume of a room only 8 1⁄3 feet long by 8 1⁄3 feet wide by 8 1⁄3 feet high. Mass, A million cubic millimeters of water would have a volume of one litre, a million millilitres or cubic centimetres of water has a mass of a million grams or one tonne. Weight, A million 80-milligram honey bees would weigh the same as an 80 kg person, landscape, A pyramidal hill 600 feet wide at the base and 100 feet high would weigh about a million tons. Computer, A display resolution of 1,280 by 800 pixels contains 1,024,000 pixels, money, A USD bill of any denomination weighs 1 gram. There are 454 grams in a pound, one million $1 bills would weigh 2,204.62 pounds, or just over 1 ton. Time, A million seconds is 11.57 days, in Indian English and Pakistani English, it is also expressed as 10 lakh or 10 Lac. Lakh is derived from laksh for 100,000 in Sanskrit
15.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number
16.
10 (number)
–
10 is an even natural number following 9 and preceding 11. Ten is the base of the numeral system, by far the most common system of denoting numbers in both spoken and written language. The reason for the choice of ten is assumed to be that humans have ten fingers, a collection of ten items is called a decade. The ordinal adjective is decimal, the adjective is denary. Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten, to reduce something by one tenth is to decimate. A theoretical highest number in topics that require a rating, by contrast having 0 or 1 as the lowest number, Ten is a composite number, its proper divisors being 1,2 and 5. Ten is the smallest noncototient, a number that cannot be expressed as the difference between any integer and the number of coprimes below it. Ten is the discrete semiprime and the second member of the discrete semiprime family. Ten has an aliquot sum σ of 8 and is accordingly the first discrete semiprime to be in deficit, all subsequent discrete semiprimes are in deficit. The aliquot sequence for 10 comprises five members with this number being the second member of the 7-aliquot tree. Ten is the smallest semiprime that is the sum of all the prime numbers from its lower factor through its higher factor Only three other small semiprimes share this attribute. It is the sum of only one number the discrete semiprime 14. Ten is the sum of the first three numbers, of the four first numbers, of the square of the two first odd numbers and also of the first four factorials. Ten is the eighth Perrin number, preceded in the sequence by 5,5,7, a polygon with ten sides is a decagon, and 10 is a decagonal number. Because 10 is the product of a power of 2 with nothing but distinct Fermat primes, Ten is also a triangular number, a centered triangular number, and a tetrahedral number. Ten is the number of n queens problem solutions for n =5, Ten is the smallest number whose status as a possible friendly number is unknown. As is the case for any base in its system, ten is the first two-digit number in decimal, any integer written in the decimal system can be multiplied by ten by adding a zero to the end. The Roman numeral for ten is X, it is thought that the V for five is derived from an open hand, incidentally, the Chinese word numeral for ten, is also a cross, 十
17.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few
18.
Mass
–
In physics, mass is a property of a physical body. It is the measure of a resistance to acceleration when a net force is applied. It also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram, Mass is not the same as weight, even though mass is often determined by measuring the objects weight using a spring scale, rather than comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity and this is because weight is a force, while mass is the property that determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object, however, at very high speeds, special relativity postulates that energy is an additional source of mass. Thus, any body having mass has an equivalent amount of energy. In addition, matter is a defined term in science. There are several distinct phenomena which can be used to measure mass, active gravitational mass measures the gravitational force exerted by an object. Passive gravitational mass measures the force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force, according to Newtons second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A bodys mass also determines the degree to which it generates or is affected by a gravitational field and this is sometimes referred to as gravitational mass. The standard International System of Units unit of mass is the kilogram, the kilogram is 1000 grams, first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the prototype kilogram. As of January 2013, there are proposals for redefining the kilogram yet again. In this context, the mass has units of eV/c2, the electronvolt and its multiples, such as the MeV, are commonly used in particle physics. The atomic mass unit is 1/12 of the mass of a carbon-12 atom, the atomic mass unit is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include, the slug is an Imperial unit of mass, the pound is a unit of both mass and force, used mainly in the United States
19.
SI base unit
–
The International System of Units defines seven units of measure as a basic set from which all other SI units can be derived. The SI base units form a set of mutually independent dimensions as required by dimensional analysis commonly employed in science, thus, the kelvin, named after Lord Kelvin, has the symbol K and the ampere, named after André-Marie Ampère, has the symbol A. Many other units, such as the litre, are not part of the SI. The definitions of the units have been modified several times since the Metre Convention in 1875. Since the redefinition of the metre in 1960, the kilogram is the unit that is directly defined in terms of a physical artifact. However, the mole, the ampere, and the candela are linked through their definitions to the mass of the platinum–iridium cylinder stored in a vault near Paris. It has long been an objective in metrology to define the kilogram in terms of a fundamental constant, two possibilities have attracted particular attention, the Planck constant and the Avogadro constant. The 23rd CGPM decided to postpone any formal change until the next General Conference in 2011
20.
Exponentiation
–
Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent n. The exponent is usually shown as a superscript to the right of the base, Some common exponents have their own names, the exponent 2 is called the square of b or b squared, the exponent 3 is called the cube of b or b cubed. The exponent −1 of b, or 1 / b, is called the reciprocal of b, when n is a positive integer and b is not zero, b−n is naturally defined as 1/bn, preserving the property bn × bm = bn + m. The definition of exponentiation can be extended to any real or complex exponent. Exponentiation by integer exponents can also be defined for a variety of algebraic structures. The term power was used by the Greek mathematician Euclid for the square of a line, archimedes discovered and proved the law of exponents, 10a 10b = 10a+b, necessary to manipulate powers of 10. In the late 16th century, Jost Bürgi used Roman numerals for exponents, early in the 17th century, the first form of our modern exponential notation was introduced by Rene Descartes in his text titled La Géométrie, there, the notation is introduced in Book I. Nicolas Chuquet used a form of notation in the 15th century. The word exponent was coined in 1544 by Michael Stifel, samuel Jeake introduced the term indices in 1696. In the 16th century Robert Recorde used the square, cube, zenzizenzic, sursolid, zenzicube, second sursolid. Biquadrate has been used to refer to the power as well. Some mathematicians used exponents only for greater than two, preferring to represent squares as repeated multiplication. Thus they would write polynomials, for example, as ax + bxx + cx3 + d, another historical synonym, involution, is now rare and should not be confused with its more common meaning. In 1748 Leonhard Euler wrote consider exponentials or powers in which the exponent itself is a variable and it is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. With this introduction of transcendental functions, Euler laid the foundation for the introduction of natural logarithm as the inverse function for y = ex. The expression b2 = b ⋅ b is called the square of b because the area of a square with side-length b is b2, the expression b3 = b ⋅ b ⋅ b is called the cube of b because the volume of a cube with side-length b is b3. The exponent indicates how many copies of the base are multiplied together, for example,35 =3 ⋅3 ⋅3 ⋅3 ⋅3 =243. The base 3 appears 5 times in the multiplication, because the exponent is 5
21.
Square kilometre
–
Square kilometre or square kilometer, symbol km2, is a multiple of the square metre, the SI unit of area or surface area. For example,3 km2 is equal to 3×2 =3,000,000 m2, topographical map grids are worked out in metres, with the grid lines being 1,000 metres apart. 1,100,000 maps are divided into squares representing 1 km2, each square on the map being one square centimetre in area, for 1,50,000 maps, the grid lines are 2 cm apart. Each square on the map is 2 cm by 2 cm, for 1,25,000 maps, the grid lines are 4 cm apart. Each square on the map is 4 cm by 4 cm, in each case, the grid lines enclose one square kilometre. The area enclosed by the walls of many European medieval cities were about one square kilometre, the approximate area of the old walled cities can often be worked out by fitting the course of the wall to a rectangle or an oval. Examples include Delft, Netherlands 52°0′54″N 4°21′34″E The walled city of Delft was approximately rectangular, the approximate length of rectangle was about 1.30 kilometres. The approximate width of the rectangle was about 0.75 kilometres, a perfect rectangle with these measurements has an area of 1. 30×0.75 =0.9 km2 Lucca 43°50′38″N 10°30′2″E The medieval city is roughly rectangular with rounded north-east and north-west corners. The maximum distance from east to west is 1.36 kilometres, the maximum distance from north to south is 0.80 kilometres. A perfect rectangle of these dimensions would be 1. 36×0.80 =1.088 km2, Brugge 51°12′39″N 3°13′28″E The medieval city of Brugge, a major centre in Flanders, was roughly oval or elliptical in shape with the longer or semi-major axis running north and south. The maximum distance from north to south is 2.53 kilometres, the maximum distance from east to west is 1.81 kilometres. A perfect ellipse of these dimensions would be 2.53 ×1.81 × =3.597 km2. Chester United Kingdom 53°12′1″N 2°52′45″W Chester is one of the smaller English cities that has a city wall. The distance from Northgate to Watergate is about 855 metres. The distance from Eastgate to Westgate is about 589 metres, a perfect rectangle of these dimensions would be × =0.504 km2. Parks come in all sizes, a few are almost exactly one kilometre in area. Here are some examples, Riverside Country Park, UK. Brierley Forest Park, rio de Los Angeles State Park, California, USA Jones County Central Park, Iowa, USA. Using the figures published by golf course architects Crafter and Mogford, assuming a 6,000 metres 18-hole course, an area of 80 hectares needs to be allocated for the course itself
22.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T
23.
Square
–
In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length, a square with vertices ABCD would be denoted ◻ ABCD. e. A rhombus with equal diagonals a convex quadrilateral with sides a, b, c, d whose area is A =12 =12. Opposite sides of a square are both parallel and equal in length, all four angles of a square are equal. All four sides of a square are equal, the diagonals of a square are equal. The square is the n=2 case of the families of n-hypercubes and n-orthoplexes, a truncated square, t, is an octagon. An alternated square, h, is a digon, the perimeter of a square whose four sides have length ℓ is P =4 ℓ and the area A is A = ℓ2. In classical times, the power was described in terms of the area of a square. This led to the use of the square to mean raising to the second power. The area can also be calculated using the diagonal d according to A = d 22. In terms of the circumradius R, the area of a square is A =2 R2, since the area of the circle is π R2, in terms of the inradius r, the area of the square is A =4 r 2. Because it is a polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the isoperimetric inequality holds,16 A ≤ P2 with equality if. The diagonals of a square are 2 times the length of a side of the square and this value, known as the square root of 2 or Pythagoras constant, was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles, if a figure is both a rectangle and a rhombus, then it is a square. If a circle is circumscribed around a square, the area of the circle is π /2 times the area of the square, if a circle is inscribed in the square, the area of the circle is π /4 times the area of the square. A square has an area than any other quadrilateral with the same perimeter
24.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe
25.
Volume
–
Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance or shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre, three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, Volumes of a complicated shape can be calculated by integral calculus if a formula exists for the shapes boundary. Where a variance in shape and volume occurs, such as those that exist between different human beings, these can be calculated using techniques such as the Body Volume Index. One-dimensional figures and two-dimensional shapes are assigned zero volume in the three-dimensional space, the volume of a solid can be determined by fluid displacement. Displacement of liquid can also be used to determine the volume of a gas, the combined volume of two substances is usually greater than the volume of one of the substances. However, sometimes one substance dissolves in the other and the volume is not additive. In differential geometry, volume is expressed by means of the volume form, in thermodynamics, volume is a fundamental parameter, and is a conjugate variable to pressure. Any unit of length gives a unit of volume, the volume of a cube whose sides have the given length. For example, a cubic centimetre is the volume of a cube whose sides are one centimetre in length, in the International System of Units, the standard unit of volume is the cubic metre. The metric system also includes the litre as a unit of volume, thus 1 litre =3 =1000 cubic centimetres =0.001 cubic metres, so 1 cubic metre =1000 litres. Small amounts of liquid are often measured in millilitres, where 1 millilitre =0.001 litres =1 cubic centimetre. Capacity is defined by the Oxford English Dictionary as the applied to the content of a vessel, and to liquids, grain, or the like. Capacity is not identical in meaning to volume, though closely related, Units of capacity are the SI litre and its derived units, and Imperial units such as gill, pint, gallon, and others. Units of volume are the cubes of units of length, in SI the units of volume and capacity are closely related, one litre is exactly 1 cubic decimetre, the capacity of a cube with a 10 cm side. In other systems the conversion is not trivial, the capacity of a fuel tank is rarely stated in cubic feet, for example. The density of an object is defined as the ratio of the mass to the volume, the inverse of density is specific volume which is defined as volume divided by mass. Specific volume is an important in thermodynamics where the volume of a working fluid is often an important parameter of a system being studied
26.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors