1.
Polypropylene glycol
–
Polypropylene glycol or polypropylene oxide is the polymer of propylene glycol. The term polypropylene glycol or PPG is reserved for low to medium range molar mass polymer when the nature of the end-group, the term oxide is used for high molar mass polymer when end-groups no longer affect polymer properties. In 2003, 60% of the production of propylene oxide of 6. 6×106 tonnes was converted into the polymer. Polypropylene glycol is produced by ring-opening polymerization of propylene oxide, the initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear, with a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out. Conventional polymerization of propylene oxide results in an atactic polymer, the isotactic polymer can be produced from optically active propylene oxide, but at a high cost. A salen cobalt catalyst has recently reported to provide isotactic polymerization of the racemic propylene oxide 1. PPG has many properties in common with polyethylene glycol, the polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass, secondary hydroxyl groups in PPG are less reactive than primary hydroxyl groups in polyethylene glycol. PPG is less toxic than PEG, so biotechnologicals are now produced in PPG, PPG is used in many formulations for polyurethanes. It is used as a rheology modifier, PPG is used as a surfactant, wetting agent, dispersant in leather finishing. PPG is also employed as a reference and calibrant in mass spectrometry. PPG is used as an ingredient in the manufacture of paintballs
2.
Jmol
–
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool and it is written in the programming language Java, so it can run on the operating systems Windows, macOS, Linux, and Unix, if Java is installed. It is free and open-source software released under a GNU Lesser General Public License version 2.0, a standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways, for example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile. There is also a JavaScript-only version, JSmol, that can be used on computers with no Java, the Jmol applet, among other abilities, offers an alternative to the Chime plug-in, which is no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS9. Jmol requires Java installation and operates on a variety of platforms. For example, Jmol is fully functional in Mozilla Firefox, Internet Explorer, Opera, Google Chrome, fast and Scriptable Molecular Graphics in Web Browsers without Java3D
3.
ChEMBL
–
ChEMBL or ChEMBLdb is a manually curated chemical database of bioactive molecules with drug-like properties. It is maintained by the European Bioinformatics Institute, of the European Molecular Biology Laboratory, based at the Wellcome Trust Genome Campus, Hinxton, the database, originally known as StARlite, was developed by a biotechnology company called Inpharmatica Ltd. later acquired by Galapagos NV. The data was acquired for EMBL in 2008 with an award from The Wellcome Trust, resulting in the creation of the ChEMBL chemogenomics group at EMBL-EBI, the ChEMBL database contains compound bioactivity data against drug targets. Bioactivity is reported in Ki, Kd, IC50, and EC50, data can be filtered and analyzed to develop compound screening libraries for lead identification during drug discovery. ChEMBL version 2 was launched in January 2010, including 2.4 million bioassay measurements covering 622,824 compounds and this was obtained from curating over 34,000 publications across twelve medicinal chemistry journals. ChEMBLs coverage of available bioactivity data has grown to become the most comprehensive ever seen in a public database, in October 2010 ChEMBL version 8 was launched, with over 2.97 million bioassay measurements covering 636,269 compounds. ChEMBL_10 saw the addition of the PubChem confirmatory assays, in order to integrate data that is comparable to the type, ChEMBLdb can be accessed via a web interface or downloaded by File Transfer Protocol. It is formatted in a manner amenable to computerized data mining, ChEMBL is also integrated into other large-scale chemistry resources, including PubChem and the ChemSpider system of the Royal Society of Chemistry. In addition to the database, the ChEMBL group have developed tools and these include Kinase SARfari, an integrated chemogenomics workbench focussed on kinases. The system incorporates and links sequence, structure, compounds and screening data, the primary purpose of ChEMBL-NTD is to provide a freely accessible and permanent archive and distribution centre for deposited data. July 2012 saw the release of a new data service, sponsored by the Medicines for Malaria Venture. The data in this service includes compounds from the Malaria Box screening set, myChEMBL, the ChEMBL virtual machine, was released in October 2013 to allow users to access a complete and free, easy-to-install cheminformatics infrastructure. In December 2013, the operations of the SureChem patent informatics database were transferred to EMBL-EBI, in a portmanteau, SureChem was renamed SureChEMBL. 2014 saw the introduction of the new resource ADME SARfari - a tool for predicting and comparing cross-species ADME targets
4.
ChemSpider
–
ChemSpider is a database of chemicals. ChemSpider is owned by the Royal Society of Chemistry, the database contains information on more than 50 million molecules from over 500 data sources including, Each chemical is given a unique identifier, which forms part of a corresponding URL. This is an approach to develop an online chemistry database. The search can be used to widen or restrict already found results, structure searching on mobile devices can be done using free apps for iOS and for the Android. The ChemSpider database has been used in combination with text mining as the basis of document markup. The result is a system between chemistry documents and information look-up via ChemSpider into over 150 data sources. ChemSpider was acquired by the Royal Society of Chemistry in May,2009, prior to the acquisition by RSC, ChemSpider was controlled by a private corporation, ChemZoo Inc. The system was first launched in March 2007 in a release form. ChemSpider has expanded the generic support of a database to include support of the Wikipedia chemical structure collection via their WiChempedia implementation. A number of services are available online. SyntheticPages is an interactive database of synthetic chemistry procedures operated by the Royal Society of Chemistry. Users submit synthetic procedures which they have conducted themselves for publication on the site and these procedures may be original works, but they are more often based on literature reactions. Citations to the published procedure are made where appropriate. They are checked by an editor before posting. The pages do not undergo formal peer-review like a journal article. The comments are moderated by scientific editors. The intention is to collect practical experience of how to conduct useful chemical synthesis in the lab, while experimental methods published in an ordinary academic journal are listed formally and concisely, the procedures in ChemSpider SyntheticPages are given with more practical detail. Comments by submitters are included as well, other publications with comparable amounts of detail include Organic Syntheses and Inorganic Syntheses
5.
European Chemicals Agency
–
ECHA is the driving force among regulatory authorities in implementing the EUs chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and it is located in Helsinki, Finland. The Agency, headed by Executive Director Geert Dancet, started working on 1 June 2007, the REACH Regulation requires companies to provide information on the hazards, risks and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most commonly used substances have been registered, the information is technical but gives detail on the impact of each chemical on people and the environment. This also gives European consumers the right to ask whether the goods they buy contain dangerous substances. The Classification, Labelling and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU. This worldwide system makes it easier for workers and consumers to know the effects of chemicals, companies need to notify ECHA of the classification and labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100000 substances, the information is freely available on their website. Consumers can check chemicals in the products they use, Biocidal products include, for example, insect repellents and disinfectants used in hospitals. The Biocidal Products Regulation ensures that there is information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation, the law on Prior Informed Consent sets guidelines for the export and import of hazardous chemicals. Through this mechanism, countries due to hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have effects on human health and the environment are identified as Substances of Very High Concern 1. These are mainly substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment, other substances considered as SVHCs include, for example, endocrine disrupting chemicals. Companies manufacturing or importing articles containing these substances in a concentration above 0 and they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy, once a substance has been officially identified in the EU as being of very high concern, it will be added to a list. This list is available on ECHA’s website and shows consumers and industry which chemicals are identified as SVHCs, Substances placed on the Candidate List can then move to another list
6.
E number
–
E numbers are codes for substances that are permitted to be used as food additives for use within the European Union and Switzerland. Commonly found on labels, their safety assessment and approval are the responsibility of the European Food Safety Authority. Having a single unified list for food additives was first agreed upon in 1962 with food colouring, in 1964, the directives for preservatives were added,1970 for antioxidants and 1974 for the emulsifiers, stabilisers, thickeners and gelling agents. They are increasingly, though rarely, found on North American packaging. In some European countries, E number is used informally as a pejorative term for artificial food additives. This is incorrect, because many components of foods have E numbers, e. g. vitamin C. NB, Not all examples of a fall into the given numeric range. Moreover, many chemicals, particularly in the E400–499 range, have a variety of purposes, the list shows all components that have or had an E-number assigned. Not all additives listed are still allowed in the EU, but are listed as they used to have an E-number, for an overview of currently allowed additives see here. Includes Lists of authorised food additives Food additives database
7.
PubChem
–
PubChem is a database of chemical molecules and their activities against biological assays. The system is maintained by the National Center for Biotechnology Information, a component of the National Library of Medicine, PubChem can be accessed for free through a web user interface. Millions of compound structures and descriptive datasets can be downloaded via FTP. PubChem contains substance descriptions and small molecules with fewer than 1000 atoms and 1000 bonds, more than 80 database vendors contribute to the growing PubChem database. PubChem consists of three dynamically growing primary databases, as of 28 January 2016, Compounds,82.6 million entries, contains pure and characterized chemical compounds. Substances,198 million entries, contains also mixtures, extracts, complexes, bioAssay, bioactivity results from 1.1 million high-throughput screening programs with several million values. PubChem contains its own online molecule editor with SMILES/SMARTS and InChI support that allows the import and export of all common chemical file formats to search for structures and fragments. In the text search form the database fields can be searched by adding the name in square brackets to the search term. A numeric range is represented by two separated by a colon. The search terms and field names are case-insensitive, parentheses and the logical operators AND, OR, and NOT can be used. AND is assumed if no operator is used, example,0,5000,50,10 -5,5 PubChem was released in 2004. The American Chemical Society has raised concerns about the publicly supported PubChem database and they have a strong interest in the issue since the Chemical Abstracts Service generates a large percentage of the societys revenue. To advocate their position against the PubChem database, ACS has actively lobbied the US Congress, soon after PubChems creation, the American Chemical Society lobbied U. S. Congress to restrict the operation of PubChem, which they asserted competes with their Chemical Abstracts Service
8.
International Chemical Identifier
–
Initially developed by IUPAC and NIST from 2000 to 2005, the format and algorithms are non-proprietary. The continuing development of the standard has supported since 2010 by the not-for-profit InChI Trust. The current version is 1.04 and was released in September 2011, prior to 1.04, the software was freely available under the open source LGPL license, but it now uses a custom license called IUPAC-InChI Trust License. Not all layers have to be provided, for instance, the layer can be omitted if that type of information is not relevant to the particular application. InChIs can thus be seen as akin to a general and extremely formalized version of IUPAC names and they can express more information than the simpler SMILES notation and differ in that every structure has a unique InChI string, which is important in database applications. Information about the 3-dimensional coordinates of atoms is not represented in InChI, the InChI algorithm converts input structural information into a unique InChI identifier in a three-step process, normalization, canonicalization, and serialization. The InChIKey, sometimes referred to as a hashed InChI, is a fixed length condensed digital representation of the InChI that is not human-understandable. The InChIKey specification was released in September 2007 in order to facilitate web searches for chemical compounds and it should be noted that, unlike the InChI, the InChIKey is not unique, though collisions can be calculated to be very rare, they happen. In January 2009 the final 1.02 version of the InChI software was released and this provided a means to generate so called standard InChI, which does not allow for user selectable options in dealing with the stereochemistry and tautomeric layers of the InChI string. The standard InChIKey is then the hashed version of the standard InChI string, the standard InChI will simplify comparison of InChI strings and keys generated by different groups, and subsequently accessed via diverse sources such as databases and web resources. Every InChI starts with the string InChI= followed by the version number and this is followed by the letter S for standard InChIs. The remaining information is structured as a sequence of layers and sub-layers, the layers and sub-layers are separated by the delimiter / and start with a characteristic prefix letter. The six layers with important sublayers are, Main layer Chemical formula and this is the only sublayer that must occur in every InChI. The atoms in the formula are numbered in sequence, this sublayer describes which atoms are connected by bonds to which other ones. Describes how many hydrogen atoms are connected to each of the other atoms, the condensed,27 character standard InChIKey is a hashed version of the full standard InChI, designed to allow for easy web searches of chemical compounds. Most chemical structures on the Web up to 2007 have been represented as GIF files, the full InChI turned out to be too lengthy for easy searching, and therefore the InChIKey was developed. With all databases currently having below 50 million structures, such duplication appears unlikely at present, a recent study more extensively studies the collision rate finding that the experimental collision rate is in agreement with the theoretical expectations. Example, Morphine has the structure shown on the right, as the InChI cannot be reconstructed from the InChIKey, an InChIKey always needs to be linked to the original InChI to get back to the original structure
9.
Simplified molecular-input line-entry system
–
The simplified molecular-input line-entry system is a specification in form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules, the original SMILES specification was initiated in the 1980s. It has since modified and extended. In 2007, a standard called OpenSMILES was developed in the open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. The Environmental Protection Agency funded the project to develop SMILES. It has since modified and extended by others, most notably by Daylight Chemical Information Systems. In 2007, a standard called OpenSMILES was developed by the Blue Obelisk open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, in July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is generally considered to have the advantage of being slightly more human-readable than InChI, the term SMILES refers to a line notation for encoding molecular structures and specific instances should strictly be called SMILES strings. However, the term SMILES is also used to refer to both a single SMILES string and a number of SMILES strings, the exact meaning is usually apparent from the context. The terms canonical and isomeric can lead to confusion when applied to SMILES. The terms describe different attributes of SMILES strings and are not mutually exclusive, typically, a number of equally valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol, algorithms have been developed to generate the same SMILES string for a given molecule, of the many possible strings, these algorithms choose only one of them. This SMILES is unique for each structure, although dependent on the algorithm used to generate it. These algorithms first convert the SMILES to a representation of the molecular structure. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database, there is currently no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, and these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES
10.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH
11.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
12.
Melting point
–
The melting point of a solid is the temperature at which it changes state from solid to liquid at atmospheric pressure. At the melting point the solid and liquid phase exist in equilibrium, the melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the change from liquid to solid. Because of the ability of some substances to supercool, the point is not considered as a characteristic property of a substance. For most substances, melting and freezing points are approximately equal, for example, the melting point and freezing point of mercury is 234.32 kelvins. However, certain substances possess differing solid-liquid transition temperatures, for example, agar melts at 85 °C and solidifies from 31 °C to 40 °C, such direction dependence is known as hysteresis. The melting point of ice at 1 atmosphere of pressure is close to 0 °C. In the presence of nucleating substances the freezing point of water is the same as the melting point, the chemical element with the highest melting point is tungsten, at 3687 K, this property makes tungsten excellent for use as filaments in light bulbs. Many laboratory techniques exist for the determination of melting points, a Kofler bench is a metal strip with a temperature gradient. Any substance can be placed on a section of the strip revealing its thermal behaviour at the temperature at that point, differential scanning calorimetry gives information on melting point together with its enthalpy of fusion. A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window, the several grains of a solid are placed in a thin glass tube and partially immersed in the oil bath. The oil bath is heated and with the aid of the melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, the measurement can also be made continuously with an operating process. For instance, oil refineries measure the point of diesel fuel online, meaning that the sample is taken from the process. This allows for more frequent measurements as the sample does not have to be manually collected, for refractory materials the extremely high melting point may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials, this may require extrapolation by several hundred degrees, the spectral radiance from an incandescent body is known to be a function of its temperature. An optical pyrometer matches the radiance of a body under study to the radiance of a source that has been previously calibrated as a function of temperature, in this way, the measurement of the absolute magnitude of the intensity of radiation is unnecessary. However, known temperatures must be used to determine the calibration of the pyrometer, for temperatures above the calibration range of the source, an extrapolation technique must be employed
13.
Boiling point
–
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the environmental pressure. A liquid in a vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures, for example, water boils at 100 °C at sea level, but at 93.4 °C at 2,000 metres altitude. The normal boiling point of a liquid is the case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level,1 atmosphere. At that temperature, the pressure of the liquid becomes sufficient to overcome atmospheric pressure. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar, the heat of vaporization is the energy required to transform a given quantity of a substance from a liquid into a gas at a given pressure. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation, evaporation is a surface phenomenon in which molecules located near the liquids edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, a saturated liquid contains as much thermal energy as it can without boiling. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase, the liquid can be said to be saturated with thermal energy. Any addition of energy results in a phase transition. If the pressure in a system remains constant, a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy is removed, similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied. The boiling point corresponds to the temperature at which the pressure of the liquid equals the surrounding environmental pressure. Thus, the point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa, at higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, the boiling point cannot be increased beyond the critical point. Likewise, the point decreases with decreasing pressure until the triple point is reached
14.
Aqueous solution
–
An aqueous solution is a solution in which the solvent is water. It is usually shown in chemical equations by appending to the relevant chemical formula, for example, a solution of table salt, or sodium chloride, in water would be represented as Na+ + Cl−. The word aqueous means pertaining to, related to, similar to, as water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Substances that are hydrophobic often do not dissolve well in water, an example of a hydrophilic substance is sodium chloride. Acids and bases are aqueous solutions, as part of their Arrhenius definitions, the ability of a substance to dissolve in water is determined by whether the substance can match or exceed the strong attractive forces that water molecules generate between themselves. If the substance lacks the ability to dissolve in water the molecules form a precipitate, reactions in aqueous solutions are usually metathesis reactions. Metathesis reactions are another term for double-displacement, that is, when a cation displaces to form a bond with the other anion. The cation bonded with the latter anion will dissociate and bond with the other anion, aqueous solutions that conduct electric current efficiently contain strong electrolytes, while ones that conduct poorly are considered to have weak electrolytes. Those strong electrolytes are substances that are ionized in water. Nonelectrolytes are substances that dissolve in water yet maintain their molecular integrity, examples include sugar, urea, glycerol, and methylsulfonylmethane. When writing the equations of reactions, it is essential to determine the precipitate. To determine the precipitate, one must consult a chart of solubility, soluble compounds are aqueous, while insoluble compounds are the precipitate. Remember that there may not always be a precipitate, when performing calculations regarding the reacting of one or more aqueous solutions, in general one must know the concentration, or molarity, of the aqueous solutions. Solution concentration is given in terms of the form of the prior to it dissolving. Metal ions in aqueous solution Solubility Dissociation Acid-base reaction theories Properties of water Zumdahl S.1997, 4th ed. Boston, Houghton Mifflin Company
15.
Miscibility
–
Miscibility /mɪsᵻˈbɪlᵻti/ is the property of substances to mix in all proportions, forming a homogeneous solution. The term is most often applied to liquids, but applies also to solids, water and ethanol, for example, are miscible because they mix in all proportions. By contrast, substances are said to be if a significant proportion does not form a solution. Otherwise, the substances are considered miscible, for example, butanone is significantly soluble in water, but these two solvents are not miscible because they are not soluble in all proportions. In organic compounds, the percent of hydrocarbon chain often determines the compounds miscibility with water. For example, among the alcohols, ethanol has two atoms and is miscible with water, whereas 1-octanol with eight carbons is not. Octanols immiscibility leads it to be used as a standard for partition equilibria and this is also the case with lipids, the very long carbon chains of lipids cause them almost always to be immiscible with water. Analogous situations occur for other functional groups, acetic acid is miscible with water, whereas valeric acid is not. Immiscible metals are unable to form alloys with each other, typically, a mixture will be possible in the molten state, but upon freezing the metals separate into layers. This property allows solid precipitates to be formed by freezing a molten mixture of immiscible metals. One example of immiscibility in metals is copper and cobalt, where rapid freezing to form solid precipitates has been used to create granular GMR materials, there also exist metals that are immiscible in the liquid state. One with industrial importance is that liquid zinc and liquid silver are immiscible in liquid lead and this leads to the Parkes process, an example of liquid-liquid extraction, whereby lead containing any amount of silver is melted with zinc. The silver migrates to the zinc, which is skimmed off the top of the liquid. Substances with extremely low configurational entropy, especially polymers, are likely to be immiscible in one even in the liquid state. Miscibility of two materials is often determined optically, when the two miscible liquids are combined, the resulting liquid is clear. If the mixture is cloudy the two materials are immiscible, care must be taken with this determination. If the indices of refraction of the two materials are similar, an immiscible mixture may be clear and give an incorrect determination that the two liquids are miscible, miscibility gap Emulsion Heteroazeotrope ITIES Multiphasic liquid
16.
Solubility
–
Solubility is the property of a solid, liquid, or gaseous chemical substance called solute to dissolve in a solid, liquid, or gaseous solvent. The solubility of a substance depends on the physical and chemical properties of the solute and solvent as well as on temperature, pressure. The solubility of a substance is a different property from the rate of solution. Most often, the solvent is a liquid, which can be a substance or a mixture. One may also speak of solid solution, but rarely of solution in a gas, the extent of solubility ranges widely, from infinitely soluble such as ethanol in water, to poorly soluble, such as silver chloride in water. The term insoluble is often applied to poorly or very poorly soluble compounds, a common threshold to describe something as insoluble is less than 0.1 g per 100 mL of solvent. Under certain conditions, the solubility can be exceeded to give a so-called supersaturated solution. Metastability of crystals can also lead to apparent differences in the amount of a chemical that dissolves depending on its form or particle size. A supersaturated solution generally crystallises when seed crystals are introduced and rapid equilibration occurs, phenylsalicylate is one such simple observable substance when fully melted and then cooled below its fusion point. Solubility is not to be confused with the ability to dissolve a substance, for example, zinc dissolves in hydrochloric acid as a result of a chemical reaction releasing hydrogen gas in a displacement reaction. The zinc ions are soluble in the acid, the smaller a particle is, the faster it dissolves although there are many factors to add to this generalization. Crucially solubility applies to all areas of chemistry, geochemistry, inorganic, physical, organic, in all cases it will depend on the physical conditions and the enthalpy and entropy directly relating to the solvents and solutes concerned. By far the most common solvent in chemistry is water which is a solvent for most ionic compounds as well as a range of organic substances. This is a factor in acidity/alkalinity and much environmental and geochemical work. According to the IUPAC definition, solubility is the composition of a saturated solution expressed as a proportion of a designated solute in a designated solvent. Solubility may be stated in units of concentration such as molarity, molality, mole fraction, mole ratio, mass per volume. Solubility occurs under dynamic equilibrium, which means that solubility results from the simultaneous and opposing processes of dissolution, the solubility equilibrium occurs when the two processes proceed at a constant rate. The term solubility is used in some fields where the solute is altered by solvolysis
17.
Ethanol
–
Ethanol, also called alcohol, ethyl alcohol, and drinking alcohol, is the principal type of alcohol found in alcoholic beverages. It is a volatile, flammable, colorless liquid with a characteristic odor. Its chemical formula is C 2H 6O, which can be written also as CH 3-CH 2-OH or C 2H 5-OH, ethanol is mostly produced by the fermentation of sugars by yeasts, or by petrochemical processes. It is a psychoactive drug, causing a characteristic intoxication. It is widely used as a solvent, as fuel, and as a feedstock for synthesis of other chemicals, the eth- prefix and the qualifier ethyl in ethyl alcohol originally come from the name ethyl assigned in 1834 to the group C 2H 5- by Justus Liebig. He coined the word from the German name Aether of the compound C 2H 5-O-C 2H5, according to the Oxford English Dictionary, Ethyl is a contraction of the Ancient Greek αἰθήρ and the Greek word ύλη. The name ethanol was coined as a result of a resolution that was adopted at the International Conference on Chemical Nomenclature that was held in April 1892 in Geneva, Switzerland. The term alcohol now refers to a class of substances in chemistry nomenclature. The Oxford English Dictionary claims that it is a loan from Arabic al-kuḥl, a powdered ore of antimony used since aniquity as a cosmetic. The use of alcohol for ethanol is modern, first recorded 1753, the systematic use in chemistry dates to 1850. Ethanol is used in medical wipes and most common antibacterial hand sanitizer gels as an antiseptic, ethanol kills organisms by denaturing their proteins and dissolving their lipids and is effective against most bacteria and fungi, and many viruses. However, ethanol is ineffective against bacterial spores, ethanol may be administered as an antidote to methanol and ethylene glycol poisoning. Ethanol, often in high concentrations, is used to dissolve many water-insoluble medications, as a central nervous system depressant, ethanol is one of the most commonly consumed psychoactive drugs. The amount of ethanol in the body is typically quantified by blood alcohol content, small doses of ethanol, in general, produce euphoria and relaxation, people experiencing these symptoms tend to become talkative and less inhibited, and may exhibit poor judgment. Ethanol is commonly consumed as a drug, especially while socializing. The largest single use of ethanol is as a fuel and fuel additive. Brazil in particular relies heavily upon the use of ethanol as an engine fuel, gasoline sold in Brazil contains at least 25% anhydrous ethanol. Hydrous ethanol can be used as fuel in more than 90% of new gasoline fueled cars sold in the country, Brazilian ethanol is produced from sugar cane and noted for high carbon sequestration
18.
Diethyl ether
–
Diethyl ether or simply ether, is an organic compound in the ether class with the formula 2O. It is a colorless, highly flammable liquid. It is commonly used as a solvent in laboratories and as a fluid for some engines. It was formerly used as an anesthetic, until non-flammable drugs were developed. It has been used as a drug to cause intoxication. The compound may have created by either Jābir ibn Hayyān in the 8th century or Ramon Llull in 1275. At about the time, Paracelsus discovered ethers analgesic properties in chickens. The name ether was given to the substance in 1729 by August Sigmund Frobenius and it is particularly important as a solvent in the production of cellulose plastics such as cellulose acetate. Ether starting fluid is sold and used in countries with cold climates, for the same reason it is also used as a component of the fuel mixture for carbureted compression ignition model engines. In this way diethyl ether is very similar to one of its precursors, diethyl ether is a common laboratory aprotic solvent. It has limited solubility in water and dissolves 1.5 g/100 ml water at 25 °C and this, coupled with its high volatility, makes it ideal for use as the non-polar solvent in liquid-liquid extraction. When used with a solution, the diethyl ether layer is on top due to the fact that it has a lower density than the water. It is also a solvent for the Grignard reaction in addition to other reactions involving organometallic reagents. Morton participated in a demonstration of ether anesthesia on October 16,1846 at the Ether Dome in Boston. British doctors were aware of the properties of ether as early as 1840 where it was widely prescribed in conjunction with opium. Because of its associations with Boston, the use of ether became known as the Yankee Dodge, diethyl ether depresses the myocardium and increases tracheobronchial secretions. Diethyl ether could also be mixed with other agents such as chloroform to make C. E. mixture, or chloroform. In the 2000s, ether is rarely used, the use of flammable ether was displaced by nonflammable fluorinated hydrocarbon anesthetics
19.
Chloroform
–
Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a scale as a precursor to PTFE. It is also a precursor to various refrigerants and it is one of the four chloromethanes and a trihalomethane. The molecule adopts tetrahedral molecular geometry with C3v symmetry, the total global flux of chloroform through the environment is approximately 7005660000000000000♠660000 tonnes per year, and about 90% of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil and its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow, chloroform does not significantly bioaccumulate in aquatic organisms. Justus von Liebig carried out the cleavage of chloral. Eugène Soubeiran obtained the compound by the action of chlorine bleach on both ethanol and acetone, in 1834, French chemist Jean-Baptiste Dumas determined chloroforms empirical formula and named it. In 1835, Dumas prepared the substance by the cleavage of trichloroacetic acid. Regnault prepared chloroform by chlorination of chloromethane, in 1842 Dr Robert Mortimer Glover in London discovered the anaesthetic qualities of chloroform on laboratory animals. In 1847, Scottish obstetrician James Y. Simpson was the first to demonstrate the properties of chloroform on humans. By the 1850s, chloroform was being produced on a basis by using the Liebig procedure. Today, chloroform — along with dichloromethane — is prepared exclusively, in industry, chloroform is produced by heating a mixture of chlorine and either chloromethane or methane. CDCl3 is a solvent used in NMR spectroscopy. Deuterochloroform is produced by the reaction, the reaction of acetone with sodium hypochlorite or calcium hypochlorite. The haloform process is now obsolete for the production of ordinary chloroform, deuterochloroform can also be prepared by the reaction of sodium deuteroxide with chloral hydrate, or from ordinary chloroform. The haloform reaction can also occur inadvertently in domestic settings, bleaching with hypochlorite generates halogenated compounds in side reactions, chloroform is the main byproduct. Chlorodifluoromethane is then converted into tetrafluoroethylene, the precursor to Teflon
20.
Partition coefficient
–
In the physical sciences, a partition-coefficient or distribution-coefficient is the ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium. This ratio is therefore a measure of the difference in solubility of the compound in two phases. In the chemical and pharmaceutical sciences, both phases usually are solvents, most commonly, one of the solvents is water while the second is hydrophobic such as 1-octanol. Hence the partition coefficient measures how hydrophilic or hydrophobic a chemical substance is, partition coefficients are useful in estimating the distribution of drugs within the body. Hydrophobic drugs with high octanol/water partition coefficients are distributed to hydrophobic areas such as lipid bilayers of cells. Conversely hydrophilic drugs are primarily in aqueous regions such as blood serum. If one of the solvents is a gas and the other a liquid, for example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. Partition coefficients can also be defined one of the phases is solid, for instance, when one phase is a molten metal. The partitioning of a substance into a solid results in a solid solution, partition coefficients can be measured experimentally in various ways or estimated via calculation based on a variety of methods. Despite formal recommendation to the contrary, the partition coefficient remains the predominantly used term in the scientific literature. In contrast, the IUPAC recommends that the term no longer be used, rather. When one of the solvents is water and the other is a non-polar solvent, for measurements of distribution coefficients, the pH of the aqueous phase is buffered to a specific value such that the pH is not significantly perturbed by the introduction of the compound. In addition, since log D is pH-dependent, the pH at which the log D was measured must be specified. In areas such as drug discovery—areas involving partition phenomena in systems such as the human body—the log D at the physiologic pH,7.4, is of particular interest. It is often convenient to express the log D in terms of P I, defined above, the values in the following table are from the Dortmund Data Bank. They are sorted by the coefficient, smallest to largest. Values for other compounds may be found in a variety of available reviews, critical discussions of the challenges of measurement of log P, and related computation of its estimated values, appear in several reviews. Hence, the log P of a molecule is one used in decision-making by medicinal chemists in pre-clinical drug discovery, for example
21.
Thermal conductivity
–
In physics, thermal conductivity is the property of a material to conduct heat. It is evaluated primarily in terms of Fouriers Law for heat conduction, heat transfer occurs at a lower rate across materials of low thermal conductivity than across materials of high thermal conductivity. Correspondingly, materials of high thermal conductivity are used in heat sink applications. The thermal conductivity of a material may depend on temperature, the reciprocal of thermal conductivity is called thermal resistivity. Thermal conductivity is actually a tensor, which means it is possible to have different values in different directions, in SI units, thermal conductivity is measured in watts per meter-kelvin. The dimension of thermal conductivity is M1L1T−3Θ−1 and these variables are mass, length, time, and temperature. In Imperial units, thermal conductivity is measured in BTU/, other units which are closely related to the thermal conductivity are in common use in the construction and textile industries. The construction industry makes use of such as the R-value. Although related to the conductivity of a material used in an insulation product, R-. Likewise the textile industry has several units including the tog and the clo which express thermal resistance of a material in a way analogous to the R-values used in the construction industry, there are a number of ways to measure thermal conductivity. Each of these is suitable for a range of materials, depending on the thermal properties. There is a distinction between steady-state and transient techniques, in general, steady-state techniques are useful when the temperature of the material does not change with time. This makes the signal analysis straightforward, the disadvantage is that a well-engineered experimental setup is usually needed. The Divided Bar is the most common used for consolidated rock solids. Thermal conductivity is important in science, research, electronics, building insulation and related fields. Several materials are shown in the list of thermal conductivities and these should be considered approximate due to the uncertainties related to material definitions. High energy generation rates within electronics or turbines require the use of materials with high thermal conductivity such as copper, aluminium, the reciprocal of thermal conductivity is thermal resistivity, usually expressed in kelvin-meters per watt. For a given thickness of a material, that particular constructions thermal resistance, unfortunately, there are differing definitions for these terms
22.
Viscosity
–
The viscosity of a fluid is a measure of its resistance to gradual deformation by shear stress or tensile stress. For liquids, it corresponds to the concept of thickness, for example. Viscosity is a property of the fluid which opposes the motion between the two surfaces of the fluid in a fluid that are moving at different velocities. For a given velocity pattern, the stress required is proportional to the fluids viscosity, a fluid that has no resistance to shear stress is known as an ideal or inviscid fluid. Zero viscosity is observed only at low temperatures in superfluids. Otherwise, all fluids have positive viscosity, and are said to be viscous or viscid. A fluid with a high viscosity, such as pitch. The word viscosity is derived from the Latin viscum, meaning mistletoe, the dynamic viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different speeds. It can be defined through the situation known as a Couette flow. This fluid has to be homogeneous in the layer and at different shear stresses, if the speed of the top plate is small enough, the fluid particles will move parallel to it, and their speed will vary linearly from zero at the bottom to u at the top. Each layer of fluid will move faster than the one just below it, in particular, the fluid will apply on the top plate a force in the direction opposite to its motion, and an equal but opposite one to the bottom plate. An external force is required in order to keep the top plate moving at constant speed. The magnitude F of this force is found to be proportional to the u and the area A of each plate. The proportionality factor μ in this formula is the viscosity of the fluid, the ratio u/y is called the rate of shear deformation or shear velocity, and is the derivative of the fluid speed in the direction perpendicular to the plates. Isaac Newton expressed the forces by the differential equation τ = μ ∂ u ∂ y, where τ = F/A. This formula assumes that the flow is moving along parallel lines and this equation can be used where the velocity does not vary linearly with y, such as in fluid flowing through a pipe. Use of the Greek letter mu for the dynamic viscosity is common among mechanical and chemical engineers. However, the Greek letter eta is used by chemists, physicists
23.
Glycol
–
A diol is a chemical compound containing two hydroxyl groups. This pairing of groups is pervasive, and many subcategories have been identified. The most common industrial diol is ethylene glycol, a geminal diol has two hydroxyl groups bonded to the same atom. These species arise by hydration of the carbonyl compounds, the hydration is usually unfavorable, but a notable exception is formaldehyde which, in water, exists in equilibrium with methanediol H2C2. Another example is 2C2, the form of hexafluoroacetone, in this case the hydration is made favorable by the electron-withdrawing trifluoromethyl groups. In a vicinal diol, the two hydroxyl groups occupy vicinal positions, that is, they are attached to adjacent atoms, examples include 1, 2-ethanediol or ethylene glycol HO−2−OH, a common ingredient of antifreeze products. Another example is propane-1, 2-diol, or alpha propylene glycol, HO−CH2−CH−CH3, used in the food and medicine industry, on commercial scales, the main route to vicinal diols is the hydrolysis of epoxides. The epoxides are prepared by oxidation with hydrogen peroxide of the alkene, using alkaline potassium manganate produces a colour change from clear deep purple to clear green, acidic potassium manganate turns clear colourless. Osmium tetroxide can similarly be used to oxidize alkenes to vicinal diols, the chemical reaction called Sharpless asymmetric dihydroxylation can be used to produce chiral diols from alkenes using an osmate reagent and a chiral catalyst. Another method is the Woodward cis-hydroxylation and the related Prévost reaction, depicted below,1, 3-Diols are often prepared industrially by aldol condensation of ketones with formaldehyde. Examples include 2-methyl-2-propyl-1, 3-propanediol and neopentyl glycol,1, 3-Diols can be prepared by hydration of α, β-unsaturated ketones and aldehydes. Another route involves the hydroformylation of epoxides followed by hydrogenation of the aldehyde and this method has been used for 1, 3-propanediol from ethylene oxide. More specialized routes to 1, 3-diols involves the reaction between an alkene and formaldehyde, the Prins reaction,1, 3-diols can be produced diastereoselectively from the corresponding β-hydroxy ketones using the Evans–Saksena, Narasaka–Prasad or Evans–Tishchenko reduction protocols. Diols where the groups are separated by several carbon centers are generally prepared by hydrogenation of diesters of the corresponding dicarboxylic acids. 1, 4-butanediol and 1, 5-pentanediol are important precursors to polyurethanes, n2 +4 H2 → n2 +2 H2O Bisphenol A is an important compound that contains two phenol groups. It is a block in the production of polycarbonate plastics. It is produced by condensation of phenol and acetone, from the industrial perspective, the dominant reactions of the diols is in the production of polyurethanes and alkyd resins. Diols react as alcohols, by esterification and ether formation, diols such as ethylene glycol are used as co-monomers in polymerization reactions forming polymers including some polyesters and polyurethanes
24.
Organic compound
–
An organic compound is virtually any chemical compound that contains carbon, although a consensus definition remains elusive and likely arbitrary. Organic compounds are rare terrestrially, but of importance because all known life is based on organic compounds. The most basic petrochemicals are considered the building blocks of organic chemistry, for historical reasons discussed below, a few types of carbon-containing compounds, such as carbides, carbonates, simple oxides of carbon, and cyanides are considered inorganic. The distinction between organic and inorganic compounds, while useful in organizing the vast subject of chemistry. Organic chemistry is the science concerned with all aspects of organic compounds, Organic synthesis is the methodology of their preparation. The word organic is historical, dating to the 1st century, for many centuries, Western alchemists believed in vitalism. This is the theory that certain compounds could be synthesized only from their classical elements—earth, water, air, vitalism taught that these organic compounds were fundamentally different from the inorganic compounds that could be obtained from the elements by chemical manipulation. Vitalism survived for a while even after the rise of modern atomic theory and it first came under question in 1824, when Friedrich Wöhler synthesized oxalic acid, a compound known to occur only in living organisms, from cyanogen. A more decisive experiment was Wöhlers 1828 synthesis of urea from the inorganic salts potassium cyanate, urea had long been considered an organic compound, as it was known to occur only in the urine of living organisms. Wöhlers experiments were followed by others, in which increasingly complex organic substances were produced from inorganic ones without the involvement of any living organism. Even though vitalism has been discredited, scientific nomenclature retains the distinction between organic and inorganic compounds, still, even the broadest definition requires excluding alloys that contain carbon, including steel. The C-H definition excludes compounds that are considered organic, neither urea nor oxalic acid is organic by this definition, yet they were two key compounds in the vitalism debate. The IUPAC Blue Book on organic nomenclature specifically mentions urea and oxalic acid, other compounds lacking C-H bonds but traditionally considered organic include benzenehexol, mesoxalic acid, and carbon tetrachloride. Mellitic acid, which contains no C-H bonds, is considered an organic substance in Martian soil. The C-H bond-only rule also leads to somewhat arbitrary divisions in sets of carbon-fluorine compounds, for example, CF4 would be considered by this rule to be inorganic, whereas CF3H would be organic. Organic compounds may be classified in a variety of ways, one major distinction is between natural and synthetic compounds. Another distinction, based on the size of organic compounds, distinguishes between small molecules and polymers, natural compounds refer to those that are produced by plants or animals. Many of these are extracted from natural sources because they would be more expensive to produce artificially
25.
Diol
–
A diol is a chemical compound containing two hydroxyl groups. This pairing of groups is pervasive, and many subcategories have been identified. The most common industrial diol is ethylene glycol, a geminal diol has two hydroxyl groups bonded to the same atom. These species arise by hydration of the carbonyl compounds, the hydration is usually unfavorable, but a notable exception is formaldehyde which, in water, exists in equilibrium with methanediol H2C2. Another example is 2C2, the form of hexafluoroacetone, in this case the hydration is made favorable by the electron-withdrawing trifluoromethyl groups. In a vicinal diol, the two hydroxyl groups occupy vicinal positions, that is, they are attached to adjacent atoms, examples include 1, 2-ethanediol or ethylene glycol HO−2−OH, a common ingredient of antifreeze products. Another example is propane-1, 2-diol, or alpha propylene glycol, HO−CH2−CH−CH3, used in the food and medicine industry, on commercial scales, the main route to vicinal diols is the hydrolysis of epoxides. The epoxides are prepared by oxidation with hydrogen peroxide of the alkene, using alkaline potassium manganate produces a colour change from clear deep purple to clear green, acidic potassium manganate turns clear colourless. Osmium tetroxide can similarly be used to oxidize alkenes to vicinal diols, the chemical reaction called Sharpless asymmetric dihydroxylation can be used to produce chiral diols from alkenes using an osmate reagent and a chiral catalyst. Another method is the Woodward cis-hydroxylation and the related Prévost reaction, depicted below,1, 3-Diols are often prepared industrially by aldol condensation of ketones with formaldehyde. Examples include 2-methyl-2-propyl-1, 3-propanediol and neopentyl glycol,1, 3-Diols can be prepared by hydration of α, β-unsaturated ketones and aldehydes. Another route involves the hydroformylation of epoxides followed by hydrogenation of the aldehyde and this method has been used for 1, 3-propanediol from ethylene oxide. More specialized routes to 1, 3-diols involves the reaction between an alkene and formaldehyde, the Prins reaction,1, 3-diols can be produced diastereoselectively from the corresponding β-hydroxy ketones using the Evans–Saksena, Narasaka–Prasad or Evans–Tishchenko reduction protocols. Diols where the groups are separated by several carbon centers are generally prepared by hydrogenation of diesters of the corresponding dicarboxylic acids. 1, 4-butanediol and 1, 5-pentanediol are important precursors to polyurethanes, n2 +4 H2 → n2 +2 H2O Bisphenol A is an important compound that contains two phenol groups. It is a block in the production of polycarbonate plastics. It is produced by condensation of phenol and acetone, from the industrial perspective, the dominant reactions of the diols is in the production of polyurethanes and alkyd resins. Diols react as alcohols, by esterification and ether formation, diols such as ethylene glycol are used as co-monomers in polymerization reactions forming polymers including some polyesters and polyurethanes
26.
Water
–
Water is a transparent and nearly colorless chemical substance that is the main constituent of Earths streams, lakes, and oceans, and the fluids of most living organisms. Its chemical formula is H2O, meaning that its molecule contains one oxygen, Water strictly refers to the liquid state of that substance, that prevails at standard ambient temperature and pressure, but it often refers also to its solid state or its gaseous state. It also occurs in nature as snow, glaciers, ice packs and icebergs, clouds, fog, dew, aquifers, Water covers 71% of the Earths surface. It is vital for all forms of life. Only 2. 5% of this water is freshwater, and 98. 8% of that water is in ice and groundwater. Less than 0. 3% of all freshwater is in rivers, lakes, and the atmosphere, a greater quantity of water is found in the earths interior. Water on Earth moves continually through the cycle of evaporation and transpiration, condensation, precipitation. Evaporation and transpiration contribute to the precipitation over land, large amounts of water are also chemically combined or adsorbed in hydrated minerals. Safe drinking water is essential to humans and other even though it provides no calories or organic nutrients. There is a correlation between access to safe water and gross domestic product per capita. However, some observers have estimated that by 2025 more than half of the population will be facing water-based vulnerability. A report, issued in November 2009, suggests that by 2030, in developing regions of the world. Water plays an important role in the world economy, approximately 70% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a source of food for many parts of the world. Much of long-distance trade of commodities and manufactured products is transported by boats through seas, rivers, lakes, large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a variety of chemical substances, as such it is widely used in industrial processes. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, Water is a liquid at the temperatures and pressures that are most adequate for life. Specifically, at atmospheric pressure of 1 bar, water is a liquid between the temperatures of 273.15 K and 373.15 K
27.
Polymer
–
A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Because of their range of properties, both synthetic and natural polymers play an essential and ubiquitous role in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure, Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. The units composing polymers derive, actually or conceptually, from molecules of low molecular mass. The term was coined in 1833 by Jöns Jacob Berzelius, though with a distinct from the modern IUPAC definition. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger, Polymers are studied in the fields of biophysics and macromolecular science, and polymer science. Polyisoprene of latex rubber is an example of a polymer. In biological contexts, essentially all biological macromolecules—i. e, proteins, nucleic acids, and polysaccharides—are purely polymeric, or are composed in large part of polymeric components—e. g. Isoprenylated/lipid-modified glycoproteins, where small molecules and oligosaccharide modifications occur on the polyamide backbone of the protein. The simplest theoretical models for polymers are ideal chains, Polymers are of two types, Natural polymeric materials such as shellac, amber, wool, silk and natural rubber have been used for centuries. A variety of natural polymers exist, such as cellulose. Most commonly, the continuously linked backbone of a used for the preparation of plastics consists mainly of carbon atoms. A simple example is polyethylene, whose repeating unit is based on ethylene monomer, however, other structures do exist, for example, elements such as silicon form familiar materials such as silicones, examples being Silly Putty and waterproof plumbing sealant. Oxygen is also present in polymer backbones, such as those of polyethylene glycol, polysaccharides. Polymerization is the process of combining many small molecules known as monomers into a covalently bonded chain or network, during the polymerization process, some chemical groups may be lost from each monomer. This is the case, for example, in the polymerization of PET polyester, the distinct piece of each monomer that is incorporated into the polymer is known as a repeat unit or monomer residue. Laboratory synthetic methods are divided into two categories, step-growth polymerization and chain-growth polymerization. However, some methods such as plasma polymerization do not fit neatly into either category
28.
Hygroscopy
–
Hygroscopy is the phenomenon of attracting and holding water molecules from the surrounding environment, which is usually at normal or room temperature. This is achieved through either absorption or adsorption with the absorbing or adsorbing substance becoming physically changed somewhat. Zinc chloride and calcium chloride, as well as potassium hydroxide and sodium hydroxide, are so hygroscopic that they readily dissolve in the water they absorb, not only is sulfuric acid hygroscopic in concentrated form but its solutions are hygroscopic down to concentrations of 10 Vol-% or below. A hygroscopic material will tend to damp and cakey when exposed to moist air. Because of their affinity for moisture, hygroscopic materials might require storage in sealed containers. When added to foods or other materials for the purpose of maintaining moisture content. Materials and compounds exhibit different hygroscopic properties, and this difference can lead to detrimental effects, differences in hygroscopy can be observed in plastic-laminated paperback book covers—often, in a suddenly moist environment, the book cover will curl away from the rest of the book. The unlaminated side of the cover absorbs more moisture than the side and increases in area. This is similar to the function of a thermostats bi-metallic strip, inexpensive dial-type hygrometers make use of this principle using a coiled strip. Deliquescence, the process by which a substance absorbs moisture from the atmosphere until it dissolves in the absorbed water, deliquescence occurs when the vapour pressure of the solution that is formed is less than the partial pressure of water vapour in the air. While some similar forces are at work here, it is different from capillary attraction, a process where glass or other solid substances attract water, the similar-sounding but unrelated word hydroscopic is sometimes used in error for hygroscopic. A hydroscope is a device used for making observations deep under water. The amount of moisture held by hygroscopic materials is proportional to the relative humidity. Tables containing this information can be found in engineering handbooks and is also available from suppliers of various materials and chemicals. Hygroscopy also plays an important role in the engineering of plastic materials, some plastics are hygroscopic while others are not. The seeds of grasses have hygroscopic extensions that bend with changes in humidity. An example is Needle-and-Thread, Hesperostipa comata, each seed has an awn that twists several turns when the seed is released. Increased moisture causes it to untwist, and, upon drying, to twist again, thorny dragons collect moisture in the dry desert via nighttime condensation of dew that forms on their skin and is channeled to their mouths in hygroscopic grooves between the spines of their skin
29.
Enantiomer
–
A single chiral atom or similar structural feature in a compound causes that compound to have two possible structures which are non-superposable, each a mirror image of the other. Each member of the pair is termed an enantiomorph, the property is termed enantiomerism. The presence of multiple features in a given compound increases the number of geometric forms possible. Enantiopure compounds refer to samples having, within the limits of detection and they are sometimes called optical isomers for this reason. Enantiomer members often have different chemical reactions with other enantiomer substances, since many biological molecules are enantiomers, there is sometimes a marked difference in the effects of two enantiomers on biological organisms. Owing to this discovery, drugs composed of one enantiomer can be developed to enhance the pharmacological efficacy. An example is eszopiclone, which is enantiopure and therefore administered in doses that are exactly 1/2 of the older, in the case of eszopiclone, the S enantiomer is responsible for all the desired effects, while the other enantiomer seems to be inactive. A dose of 2 mg of zopiclone must be administered to produce the therapeutic effect as 1 mg of eszopiclone. In chemical synthesis of enantiomeric substances, non-enantiomeric precursors inevitably produce racemic mixtures, in the absence of an effective enantiomeric environment, separation of a racemic mixture into its enantiomeric components is impossible. The R/S system is an important nomenclature system for denoting distinct enantiomers, another system is based on prefix notation for optical activity, - and - or d- and l-. The Latin for left and right is laevus and dexter, respectively, left and right have always had moral connotations, and the Latin words for these are sinister and rectus. The English word right is a cognate of rectus and this is the origin of the D, L and S, R notations, and the employment of prefixes levo- and dextro- in common names. Most compounds that one or more asymmetric carbon atoms show enantiomerism. There are a few compounds that do have asymmetric carbon atoms. An example of such an enantiomer is the sedative thalidomide, which was sold in a number of countries across the world from 1957 until 1961 and it was withdrawn from the market when it was found to cause of birth defects. One enantiomer caused the desirable effects, while the other, unavoidably present in equal quantities. The herbicide mecoprop is a mixture, with the --enantiomer possessing the herbicidal activity. Another example is the antidepressant drugs escitalopram and citalopram, citalopram is a racemate, escitalopram is a pure enantiomer
30.
Propylene oxide
–
Propylene oxide is an organic compound with the molecular formula CH3CHCH2O. This colourless volatile liquid is produced on a large scale industrially and it is a chiral epoxide, although it is commonly used as a racemic mixture. This compound is sometimes called 1, 2-propylene oxide to distinguish it from its isomer 1, 3-propylene oxide, industrial production of propylene oxide starts from propylene. Two general approaches are employed, one involving hydrochlorination and the other involving oxidation, in 2005, about half of the world production was through chlorohydrin technology and one half via oxidation routes. The latter approach is growing in importance, for example, Lime is often used to absorb the HCl. The other general route to propylene oxide involves oxidation of propylene with an organic peroxide and this coproduct can be dehydrated to isobutene, converted to MTBE, an additive for gasoline. Ethylbenzene hydroperoxide, derived from oxygenation of ethylbenzene, which affords 1-phenylethanol and this coproduct can be dehydrated to give styrene, a useful monomer. Cumene hydroperoxide derived from oxygenation of cumene, which affords cumyl alcohol, via dehydration and hydrogenation this coproduct can be recycled back to cumene. This technology was commercialized by Sumitomo Chemical, in March 2009, BASF and Dow Chemical started up their new HPPO plant in Antwerp. In the HPPO-Process, propylene is oxidized with hydrogen peroxide, CH3CH=CH2 + H2O2 → CH3CHCH2O + H2O In this process no side products other than water are generated, between 60 and 70% of all propylene oxide is converted to polyether polyols by the process called alkoxylation. These polyols are building blocks in the production of polyurethane plastics, about 20% of propylene oxide is hydrolyzed into propylene glycol, via a process which is accelerated by acid or base catalysis. Other major products are polypropylene glycol, propylene glycol ethers, Propylene oxide was once used as a racing fuel, but that usage is now prohibited under the US NHRA rules for safety reasons. It has also used in glow fuel for model aircraft and surface vehicles, typically combined in small percentages of around 2% as an additive to the typical methanol, nitromethane. It is also used in weapons, and microbial fumigation. Pistachio nuts can also be subjected to propylene oxide to control Salmonella, Propylene oxide is commonly used in the preparation of biological samples for electron microscopy, to remove residual ethanol previously used for dehydration. In a typical procedure, the sample is first immersed in a mixture of equal volumes of ethanol and propylene oxide for 5 minutes, Propylene oxide is a probable human carcinogen, and listed as an IARC Group 2B carcinogen. In 2016 it was reported that propylene oxide was detected in Sagittarius B2 and it is the first chiral molecule to be detected in space. WebBook page for C3H6O Propylene oxide at the United States Environmental Protection Agency Propylene oxide - chemical product info, properties, production, Propylene oxide at the Technology Transfer Network Air Toxics Web Site CDC - NIOSH Pocket Guide to Chemical Hazards
31.
Freezing-point depression
–
Freezing-point depression is the process in which adding a solute to a solvent decreases the freezing point of the solvent. Examples include salt in water, alcohol in water, or the mixing of two such as impurities in a finely powdered drug. In the last case, the compound is the solute. The resulting solution or solid-solid mixture has a freezing point than the pure solvent or solid. This phenomenon is what causes sea water, to liquid at temperatures below 0 °C. The phenomenon of freezing-point depression has many practical uses, the radiator fluid in an automobile is a mixture of water and ethylene glycol. As a result of freezing-point depression, radiators do not freeze in winter, road salting takes advantage of this effect to lower the freezing point of the ice it is placed on. Lowering the freezing point allows the ice to melt at lower temperatures, preventing the accumulation of dangerous. Commonly used sodium chloride can depress the freezing point of water to about −21 °C, if the road surface temperature is lower NaCl becomes ineffective and other salts are used, such as calcium chloride, magnesium chloride or a mixture of many. These salts are somewhat aggressive to metals, especially iron, so in airports safer media such as formate, potassium formate, sodium acetate. Freezing-point depression is used by organisms that live in extreme cold. Such creatures have evolved means through which they can produce high concentration of compounds such as sorbitol and glycerol. In other animals, such as the spring peeper frog, the molality is increased temporarily as a reaction to cold temperatures. In the case of the frog, freezing temperatures trigger a large scale breakdown of glycogen in the frogs liver. With the formula below, freezing-point depression can be used to measure the degree of dissociation or the mass of the solute. This kind of measurement is called cryoscopy and relies on measurement of the freezing point. The degree of dissociation is measured by determining the van t Hoff factor i by first determining mB, in this case, the molar mass of the solute must be known. The molar mass of a solute is determined by comparing mB with the amount of solute dissolved, in this case, i must be known, and the procedure is primarily useful for organic compounds using a nonpolar solvent