1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
2.
Johannes Kepler
–
Johannes Kepler was a German mathematician, astronomer, and astrologer. A key figure in the 17th-century scientific revolution, he is best known for his laws of motion, based on his works Astronomia nova, Harmonices Mundi. These works also provided one of the foundations for Isaac Newtons theory of universal gravitation, Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague and he was also a mathematics teacher in Linz, and an adviser to General Wallenstein. Kepler lived in an era when there was no distinction between astronomy and astrology, but there was a strong division between astronomy and physics. Kepler was born on December 27, the feast day of St John the Evangelist,1571 and his grandfather, Sebald Kepler, had been Lord Mayor of the city. By the time Johannes was born, he had two brothers and one sister and the Kepler family fortune was in decline and his father, Heinrich Kepler, earned a precarious living as a mercenary, and he left the family when Johannes was five years old. He was believed to have died in the Eighty Years War in the Netherlands and his mother Katharina Guldenmann, an innkeepers daughter, was a healer and herbalist. Born prematurely, Johannes claimed to have weak and sickly as a child. Nevertheless, he often impressed travelers at his grandfathers inn with his phenomenal mathematical faculty and he was introduced to astronomy at an early age, and developed a love for it that would span his entire life. At age six, he observed the Great Comet of 1577, in 1580, at age nine, he observed another astronomical event, a lunar eclipse, recording that he remembered being called outdoors to see it and that the moon appeared quite red. However, childhood smallpox left him with vision and crippled hands. In 1589, after moving through grammar school, Latin school, there, he studied philosophy under Vitus Müller and theology under Jacob Heerbrand, who also taught Michael Maestlin while he was a student, until he became Chancellor at Tübingen in 1590. He proved himself to be a mathematician and earned a reputation as a skilful astrologer. Under the instruction of Michael Maestlin, Tübingens professor of mathematics from 1583 to 1631 and he became a Copernican at that time. In a student disputation, he defended heliocentrism from both a theoretical and theological perspective, maintaining that the Sun was the source of motive power in the universe. Despite his desire to become a minister, near the end of his studies, Kepler was recommended for a position as teacher of mathematics and he accepted the position in April 1594, at the age of 23. Keplers first major work, Mysterium Cosmographicum, was the first published defense of the Copernican system
3.
Triangular tiling
–
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane. Because the internal angle of the triangle is 60 degrees. The triangular tiling has Schläfli symbol of, Conway calls it a deltille, named from the triangular shape of the Greek letter delta. The triangular tiling can also be called a kishextille by a kis operation that adds a center point and it is one of three regular tilings of the plane. The other two are the square tiling and the hexagonal tiling, there are 9 distinct uniform colorings of a triangular tiling. Three of them can be derived from others by repeating colors,111212 and 111112 from 121213 by combining 1 and 3, there is one class of Archimedean colorings,111112, which is not 1-uniform, containing alternate rows of triangles where every third is colored. The example shown is 2-uniform, but there are many such Archimedean colorings that can be created by arbitrary horizontal shifts of the rows. The vertex arrangement of the tiling is called an A2 lattice. It is the 2-dimensional case of a simplectic honeycomb, the A*2 lattice can be constructed by the union of all three A2 lattices, and equivalent to the A2 lattice. + + = dual of = The vertices of the tiling are the centers of the densest possible circle packing. Every circle is in contact with 6 other circles in the packing, the packing density is π⁄√12 or 90. 69%. Since the union of 3 A2 lattices is also an A2 lattice, the voronoi cell of a triangular tiling is a hexagon, and so the voronoi tessellation, the hexagonal tiling has a direct correspondence to the circle packings. Triangular tilings can be made with the equivalent topology as the regular tiling, with identical faces and vertex-transitivity, there are 5 variations. Symmetry given assumes all faces are the same color, the planar tilings are related to polyhedra. Putting fewer triangles on a vertex leaves a gap and allows it to be folded into a pyramid and these can be expanded to Platonic solids, five, four and three triangles on a vertex define an icosahedron, octahedron, and tetrahedron respectively. This tiling is related as a part of sequence of regular polyhedra with Schläfli symbols. It is also related as a part of sequence of Catalan solids with face configuration Vn.6.6. Like the uniform there are eight uniform tilings that can be based from the regular hexagonal tiling
4.
Cuboctahedron
–
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, as such, it is a quasiregular polyhedron, i. e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. Its dual polyhedron is the rhombic dodecahedron, the cuboctahedron was probably known to Plato, Herons Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name Dymaxion to this shape, used in a version of the Dymaxion map. He also called it the Vector Equilibrium and he called a cuboctahedron consisting of rigid struts connected by flexible vertices a jitterbug. With Oh symmetry, order 48, it is a cube or rectified octahedron With Td symmetry, order 24. With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are, the cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, and the two types of faces, triangular and square. The last two correspond to the B2 and A2 Coxeter planes, the skew projections show a square and hexagon passing through the center of the cuboctahedron. The cuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The cuboctahedrons 12 vertices can represent the vectors of the simple Lie group A3. With the addition of 6 vertices of the octahedron, these represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron, if these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created. The cuboctahedron can also be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point and this dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra. A cuboctahedron can be obtained by taking a cross section of a four-dimensional 16-cell. Its first stellation is the compound of a cube and its dual octahedron, the cuboctahedron is a rectified cube and also a rectified octahedron. It is also a cantellated tetrahedron, with this construction it is given the Wythoff symbol,33 |2
5.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
6.
Icosidodecahedron
–
In geometry, an icosidodecahedron is a polyhedron with twenty triangular faces and twelve pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly and its dual polyhedron is the rhombic triacontahedron. An icosidodecahedron can be split along any of six planes to form a pair of pentagonal rotundae, the icosidodecahedron can be considered a pentagonal gyrobirotunda, as a combination of two rotundae. In this form its symmetry is D5d, order 20, the wire-frame figure of the icosidodecahedron consists of six flat regular decagons, meeting in pairs at each of the 30 vertices. Convenient Cartesian coordinates for the vertices of an icosidodecahedron with unit edges are given by the permutations of. The icosidodecahedron has four special orthogonal projections, centered on a vertex, an edge, a face. The last two correspond to the A2 and H2 Coxeter planes, the icosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The icosidodecahedron is a dodecahedron and also a rectified icosahedron. With orbifold notation symmetry of all of these tilings are wythoff construction within a fundamental domain of symmetry. The icosidodecahedron is related to the Johnson solid called a pentagonal orthobirotunda created by two pentagonal rotunda connected as mirror images, the icosidodecahedron can therefore be called a pentagonal gyrobirotunda with the gyration between top and bottom halves. Eight uniform star polyhedra share the same vertex arrangement, of these, two also share the same edge arrangement, the small icosihemidodecahedron, and the small dodecahemidodecahedron. The vertex arrangement is shared with the compounds of five octahedra. In four-dimensional geometry the icosidodecahedron appears in the regular 600-cell as the slice that belongs to the vertex-first passage of the 600-cell through 3D space. In other words, the 30 vertices of the 600-cell which lie at arc distances of 90 degrees on its circumscribed hypersphere from a pair of vertices, are the vertices of an icosidodecahedron. The wire frame figure of the 600-cell consists of 72 flat regular decagons, six of these are the equatorial decagons to a pair of opposite vertices. They are precisely the six decagons which form the wire frame figure of the icosidodecahedron, in the mathematical field of graph theory, a icosidodecahedral graph is the graph of vertices and edges of the icosidodecahedron, one of the Archimedean solids
7.
Trihexagonal tiling
–
In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. It consists of triangles and regular hexagons, arranged so that each hexagon is surrounded by triangles. The name derives from the fact that it combines a hexagonal tiling. Two hexagons and two triangles alternate around each vertex, and its edges form an arrangement of lines. Its dual is the rhombille tiling and this pattern, and its place in the classification of uniform tilings, was already known to Johannes Kepler in his 1619 book Harmonices Mundi. The pattern has long used in Japanese basketry, where it is called kagome. The Japanese term for this pattern has taken up in physics. It occurs also in the structures of certain minerals. Conway calls it a hexadeltille, combining elements from a hexagonal tiling. Kagome is a traditional Japanese woven bamboo pattern, its name is composed from the words kago, meaning basket, and me, meaning eye, referring to the pattern of holes in a woven basket. It is an arrangement of laths composed of interlaced triangles such that each point where two laths cross has four neighboring points, forming the pattern of a trihexagonal tiling. The weaved process gives the Kagome a chiral wallpaper group symmetry, the term kagome lattice was coined by Japanese physicist Kôdi Husimi, and first appeared in a 1951 paper by his assistant Ichirō Shōji. The kagome lattice in this sense consists of the vertices and edges of the trihexagonal tiling, despite the name, these crossing points do not form a mathematical lattice. It is represented by the vertices and edges of the cubic honeycomb, filling space by regular tetrahedra. It contains four sets of planes of points and lines. A second expression in three dimensions has parallel layers of two dimensional lattices and is called an orthorhombic-kagome lattice, the trihexagonal prismatic honeycomb represents its edges and vertices. Some minerals, namely jarosites and herbertsmithite, contain two layers or three dimensional kagome lattice arrangement of atoms in their crystal structure. These minerals display novel physical properties connected with geometrically frustrated magnetism, for instance, the spin arrangement of the magnetic ions in Co3V2O8 rests in a kagome lattice which exhibits fascinating magnetic behavior at low temperatures
8.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
9.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
10.
Isotoxal figure
–
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. The term isotoxal is derived from the Greek τοξον meaning arc, an isotoxal polygon is an equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons, in general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is a polygon with D2 symmetry. All regular polygons are isotoxal, having double the symmetry order. A regular 2n-gon is a polygon and can be marked with alternately colored vertices. An isotoxal polyhedron or tiling must be either isogonal or isohedral or both, regular polyhedra are isohedral, isogonal and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral, their duals are isohedral and isotoxal, not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. An isotoxal polyhedron has the dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids,8 formed by the Kepler–Poinsot polyhedra, cS1 maint, Multiple names, authors list Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Uniform polyhedra, Philosophical Transactions of the Royal Society of London, mathematical and Physical Sciences,246, 401–450, doi,10. 1098/rsta.1954.0003, ISSN 0080-4614, JSTOR91532, MR0062446
11.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
12.
Alternated octagonal tiling
–
In geometry, the tritetragonal tiling or alternated octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbols of or h, although a sequence of edges seem to represent straight lines, careful attention will show they are not straight, as can be seen by looking at it from different projective centers. Circle Limit III is a made in 1959 by Dutch artist M. C. Escher, in strings of fish shoot up like rockets from infinitely far away. White curves within the figure, through the middle of line of fish. The Beauty of Geometry, Twelve Essays, weisstein, Eric W. Poincaré hyperbolic disk. Hyperbolic and Spherical Tiling Gallery KaleidoTile 3, Educational software to create spherical, planar and hyperbolic tilings Hyperbolic Planar Tessellations, Don Hatch