1.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
2.
Euler characteristic
–
It is commonly denoted by χ. The Euler characteristic was originally defined for polyhedra and used to prove theorems about them. Leonhard Euler, for whom the concept is named, was responsible for much of early work. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, any convex polyhedrons surface has Euler characteristic V − E + F =2. This equation is known as Eulers polyhedron formula and it corresponds to the Euler characteristic of the sphere, and applies identically to spherical polyhedra. An illustration of the formula on some polyhedra is given below and this version holds both for convex polyhedra and the non-convex Kepler-Poinsot polyhedra. Projective polyhedra all have Euler characteristic 1, like the real plane, while the surfaces of toroidal polyhedra all have Euler characteristic 0. The Euler characteristic can be defined for connected plane graphs by the same V − E + F formula as for polyhedral surfaces, the Euler characteristic of any plane connected graph G is 2. This is easily proved by induction on the number of determined by G. For trees, E = V −1 and F =1, if G has C components, the same argument by induction on F shows that V − E + F − C =1. One of the few graph theory papers of Cauchy also proves this result, via stereographic projection the plane maps to the two-dimensional sphere, such that a connected graph maps to a polygonal decomposition of the sphere, which has Euler characteristic 2. This viewpoint is implicit in Cauchys proof of Eulers formula given below, there are many proofs of Eulers formula. One was given by Cauchy in 1811, as follows and it applies to any convex polyhedron, and more generally to any polyhedron whose boundary is topologically equivalent to a sphere and whose faces are topologically equivalent to disks. Remove one face of the polyhedral surface, after this deformation, the regular faces are generally not regular anymore. The number of vertices and edges has remained the same, therefore, proving Eulers formula for the polyhedron reduces to proving V − E + F =1 for this deformed, planar object. If there is a face more than three sides, draw a diagonal—that is, a curve through the face connecting two vertices that arent connected yet. This adds one edge and one face and does not change the number of vertices, continue adding edges in this manner until all of the faces are triangular. This decreases the number of edges and faces by one each and does not change the number of vertices, remove a triangle with two edges shared by the exterior of the network, as illustrated by the third graph
3.
Conway polyhedron notation
–
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation defined by Kepler, the basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example tC represents a cube, and taC, parsed as t, is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a cube is an octahedron. Applied in a series, these allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology, while exact geometry is not constrained, the seed polyhedra are the Platonic solids, represented by the first letter of their name, the prisms for n-gonal forms, antiprisms, cupolae and pyramids. Any polyhedron can serve as a seed, as long as the operations can be executed on it, for example regular-faced Johnson solids can be referenced as Jn, for n=1.92. In general, it is difficult to predict the appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the operation, aa=e, while a truncation after ambo produces bevel. There has been no general theory describing what polyhedra can be generated in by any set of operators, instead all results have been discovered empirically. Elements are given from the seed to the new forms, assuming seed is a polyhedron, An example image is given for each operation. The basic operations are sufficient to generate the reflective uniform polyhedra, some basic operations can be made as composites of others. Special forms The kis operator has a variation, kn, which only adds pyramids to n-sided faces, the truncate operator has a variation, tn, which only truncates order-n vertices. The operators are applied like functions from right to left, for example, a cuboctahedron is an ambo cube, i. e. t = aC, and a truncated cuboctahedron is t = t = taC. Chirality operator r – reflect – makes the image of the seed. Alternately an overline can be used for picking the other chiral form, the operations are visualized here on cube seed examples, drawn on the surface of the cube, with blue faces that cross original edges, and pink faces that center at original vertices. The first row generates the Archimedean solids and the row the Catalan solids. Comparing each new polyhedron with the cube, each operation can be visually understood, the truncated icosahedron, tI or zD, which is Goldberg polyhedron G, creates more polyhedra which are neither vertex nor face-transitive
4.
Face configuration
–
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is one vertex type and therefore the vertex configuration fully defines the polyhedron. A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex, the notation a. b. c describes a vertex that has 3 faces around it, faces with a, b, and c sides. For example,3.5.3.5 indicates a vertex belonging to 4 faces, alternating triangles and this vertex configuration defines the vertex-transitive icosidodecahedron. The notation is cyclic and therefore is equivalent with different starting points, the order is important, so 3.3.5.5 is different from 3.5.3.5. Repeated elements can be collected as exponents so this example is represented as 2. It has variously called a vertex description, vertex type, vertex symbol, vertex arrangement, vertex pattern. It is also called a Cundy and Rollett symbol for its usage for the Archimedean solids in their 1952 book Mathematical Models, a vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. Different notations are used, sometimes with a comma and sometimes a period separator, the period operator is useful because it looks like a product and an exponent notation can be used. For example,3.5.3.5 is sometimes written as 2, the notation can also be considered an expansive form of the simple Schläfli symbol for regular polyhedra. The Schläfli notation means q p-gons around each vertex, so can be written as p. p. p. or pq. For example, an icosahedron is =3.3.3.3.3 or 35 and this notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron, the notation is ambiguous for chiral forms. For example, the cube has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration, the notation also applies for nonconvex regular faces, the star polygons. For example, a pentagram has the symbol, meaning it has 5 sides going around the centre twice, for example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The small stellated dodecahedron has the Schläfli symbol of which expands to a vertex configuration 5/2. 5/2. 5/2. 5/2. 5/2 or combined as 5. The great stellated dodecahedron, has a vertex figure and configuration or 3
5.
Wythoff symbol
–
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra, a Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators, with a slight extension, Wythoffs symbol can be applied to all uniform polyhedra. However, the methods do not lead to all uniform tilings in euclidean or hyperbolic space. In three dimensions, Wythoffs construction begins by choosing a point on the triangle. If the distance of this point from each of the sides is non-zero, a perpendicular line is then dropped between the generator point and every face that it does not lie on. The three numbers in Wythoffs symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, the triangle is also represented with the same numbers, written. In this notation the mirrors are labeled by the reflection-order of the opposite vertex, the p, q, r values are listed before the bar if the corresponding mirror is active. The one impossible symbol | p q r implies the point is on all mirrors. This unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, the resulting figure has rotational symmetry only. The generator point can either be on or off each mirror and this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. A node is circled if the point is not on the mirror. There are seven generator points with each set of p, q, r, | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isnt Wythoff-constructible, There are 4 symmetry classes of reflection on the sphere, and two in the Euclidean plane. A few of the many such patterns in the hyperbolic plane are also listed. The list of Schwarz triangles includes rational numbers, and determine the set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a domain, colored by even. Selected tilings created by the Wythoff construction are given below, for a more complete list, including cases where r ≠2, see List of uniform polyhedra by Schwarz triangle
6.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
7.
Point groups in three dimensions
–
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O, the group of all isometries that leave the origin fixed, or correspondingly, O itself is a subgroup of the Euclidean group E of all isometries. Symmetry groups of objects are isometry groups, accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded 3D object have one or more fixed points. We choose the origin as one of them, the rotation group of an object is equal to its full symmetry group if and only if the object is chiral. Finite Coxeter groups are a set of point groups generated purely by a set of reflectional mirrors passing through the same point. A rank n Coxeter group has n mirrors and is represented by a Coxeter–Dynkin diagram, Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups. SO is a subgroup of E+, which consists of direct isometries, i. e. isometries preserving orientation, it contains those that leave the origin fixed. O is the product of SO and the group generated by inversion. An example would be C4 for H and S4 for M, Thus M is obtained from H by inverting the isometries in H ∖ L. This is clarifying when categorizing isometry groups, see below, in 2D the cyclic group of k-fold rotations Ck is for every positive integer k a normal subgroup of O and SO. Accordingly, in 3D, for every axis the cyclic group of rotations about that axis is a normal subgroup of the group of all rotations about that axis. e. See also the similar overview including translations, when comparing the symmetry type of two objects, the origin is chosen for each separately, i. e. they need not have the same center. Moreover, two objects are considered to be of the symmetry type if their symmetry groups are conjugate subgroups of O. The conjugacy definition would allow a mirror image of the structure, but this is not needed. For example, if a symmetry group contains a 3-fold axis of rotation, there are many infinite isometry groups, for example, the cyclic group generated by a rotation by an irrational number of turns about an axis. We may create non-cyclical abelian groups by adding more rotations around the same axis, there are also non-abelian groups generated by rotations around different axes. They will be infinite unless the rotations are specially chosen, all the infinite groups mentioned so far are not closed as topological subgroups of O
8.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two
9.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
10.
Regular polyhedron
–
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive, in classical contexts, many different equivalent definitions are used, a common one is that faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form, there are 5 finite convex regular polyhedra, known as the Platonic solids. These are the, tetrahedron, cube, octahedron, dodecahedron and icosahedron, there are also four regular star polyhedra, making nine regular polyhedra in all. All the dihedral angles of the polyhedron are equal All the vertex figures of the polyhedron are regular polygons, All the solid angles of the polyhedron are congruent. A regular polyhedron has all of three related spheres which share its centre, An insphere, tangent to all faces, an intersphere or midsphere, tangent to all edges. A circumsphere, tangent to all vertices, the regular polyhedra are the most symmetrical of all the polyhedra. They lie in just three symmetry groups, which are named after them, Tetrahedral Octahedral Icosahedral Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry, the five Platonic solids have an Euler characteristic of 2. Some of the stars have a different value. The sum of the distances from any point in the interior of a polyhedron to the sides is independent of the location of the point. However, the converse does not hold, not even for tetrahedra, in a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows, The tetrahedron is self-dual, the cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other, the small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other, the Schläfli symbol of the dual is just the original written backwards, for example the dual of is. See also Regular polytope, History of discovery, stones carved in shapes resembling clusters of spheres or knobs have been found in Scotland and may be as much as 4,000 years old. Some of these stones show not only the symmetries of the five Platonic solids, examples of these stones are on display in the John Evans room of the Ashmolean Museum at Oxford University. Why these objects were made, or how their creators gained the inspiration for them, is a mystery, the earliest known written records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, euclids reference to Plato led to their common description as the Platonic solids
11.
Convex polyhedron
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
12.
Dihedral angle
–
A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common, in solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimension, a dihedral angle represents the angle between two hyperplanes, a dihedral angle is an angle between two intersecting planes on a third plane perpendicular to the line of intersection. A torsion angle is an example of a dihedral angle. In stereochemistry every set of three atoms of a molecule defines a plane, when two such planes intersect, the angle between them is a dihedral angle. Dihedral angles are used to specify the molecular conformation, stereochemical arrangements corresponding to angles between 0° and ±90° are called syn, those corresponding to angles between ±90° and 180° anti. Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called clinal and those between 0° and ±30° or ±150° and 180° are called periplanar. The synperiplanar conformation is also known as the syn- or cis-conformation, antiperiplanar as anti or trans, for example, with n-butane two planes can be specified in terms of the two central carbon atoms and either of the methyl carbon atoms. The syn-conformation shown above, with an angle of 60° is less stable than the anti-configuration with a dihedral angle of 180°. For macromolecular usage the symbols T, C, G+, G−, A+, a Ramachandran plot, originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure, the figure at right illustrates the definition of the φ and ψ backbone dihedral angles. In a protein chain three dihedral angles are defined as φ, ψ and ω, as shown in the diagram, the planarity of the peptide bond usually restricts ω to be 180° or 0°. The distance between the Cα atoms in the trans and cis isomers is approximately 3.8 and 2.9 Å, the cis isomer is mainly observed in Xaa–Pro peptide bonds. The sidechain dihedral angles tend to cluster near 180°, 60°, and −60°, which are called the trans, gauche+, the stability of certain sidechain dihedral angles is affected by the values φ and ψ. For instance, there are steric interactions between the Cγ of the side chain in the gauche+ rotamer and the backbone nitrogen of the next residue when ψ is near -60°. An alternative method is to calculate the angle between the vectors, nA and nB, which are normal to the planes. Cos φ = − n A ⋅ n B | n A | | n B | where nA · nB is the dot product of the vectors and |nA| |nB| is the product of their lengths. Any plane can also be described by two non-collinear vectors lying in that plane, taking their cross product yields a vector to the plane
13.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
14.
Regular icosahedron
–
In geometry, a regular icosahedron is a convex polyhedron with 20 faces,30 edges and 12 vertices. It is one of the five Platonic solids, and also the one with the most sides and it has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol, or sometimes by its vertex figure as 3.3.3.3.3 or 35 and it is the dual of the dodecahedron, which is represented by, having three pentagonal faces around each vertex. A regular icosahedron is a pentagonal bipyramid and a biaugmented pentagonal antiprism in any of six orientations. The name comes from Greek εἴκοσι, meaning twenty, and ἕδρα, the plural can be either icosahedrons or icosahedra. The surface area A and the volume V of a regular icosahedron of edge length a are, note that these vertices form five sets of three concentric, mutually orthogonal golden rectangles, whose edges form Borromean rings. If the original icosahedron has edge length 1, its dual dodecahedron has edge length √5 − 1/2 = 1/ϕ = ϕ −1, the 12 edges of a regular octahedron can be subdivided in the golden ratio so that the resulting vertices define a regular icosahedron. The locations of the vertices of a regular icosahedron can be described using spherical coordinates, if two vertices are taken to be at the north and south poles, then the other ten vertices are at latitude ±arctan ≈ ±26. 57°. These ten vertices are at evenly spaced longitudes, alternating between north and south latitudes and this projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane, an icosahedron has 43,380 distinct nets. To color the icosahedron, such that no two adjacent faces have the color, requires at least 3 colors. A problem dating back to the ancient Greeks is to determine which of two shapes has larger volume, an icosahedron inscribed in a sphere, or a dodecahedron inscribed in the same sphere, the problem was solved by Hero, Pappus, and Fibonacci, among others. Apollonius of Perga discovered the result that the ratio of volumes of these two shapes is the same as the ratio of their surface areas. Both volumes have formulas involving the golden ratio, but taken to different powers, as it turns out, the icosahedron occupies less of the spheres volume than the dodecahedron. The following construction of the icosahedron avoids tedious computations in the number field ℚ necessary in more elementary approaches, the existence of the icosahedron amounts to the existence of six equiangular lines in ℝ3. Indeed, intersecting such a system of lines with a Euclidean sphere centered at their common intersection yields the twelve vertices of a regular icosahedron as can easily be checked. Conversely, supposing the existence of an icosahedron, lines defined by its six pairs of opposite vertices form an equiangular system. In order to such an equiangular system, we start with this 6 ×6 square matrix
15.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
16.
Net (polyhedron)
–
In geometry the net of a polyhedron is an arrangement of edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are an aid to the study of polyhedra and solid geometry in general. Many different nets can exist for a polyhedron, depending on the choices of which edges are joined. Conversely, a given net may fold into more than one different convex polyhedron, depending on the angles at which its edges are folded, additionally, the same net may have multiple valid gluing patterns, leading to different folded polyhedra. Shephard asked whether every convex polyhedron has at least one net and this question, which is also known as Dürers conjecture, or Dürers unfolding problem, remains unanswered. There exist non-convex polyhedra that do not have nets, and it is possible to subdivide the faces of every convex polyhedron so that the set of subdivided faces has a net, in 2014 Mohammad Ghomi showed that every convex polyhedron admits a net after an affine transformation. The shortest path over the surface between two points on the surface of a polyhedron corresponds to a line on a suitable net for the subset of faces touched by the path. The net has to be such that the line is fully within it. Other candidates for the shortest path are through the surface of a third face adjacent to both, and corresponding nets can be used to find the shortest path in each category, the geometric concept of a net can be extended to higher dimensions. The above net of the tesseract, the hypercube, is used prominently in a painting by Salvador Dalí. However, it is known to be possible for every convex uniform 4-polytope, Paper model Cardboard modeling UV mapping Weisstein, Eric W. Net. Regular 4d Polytope Foldouts Editable Printable Polyhedral Nets with an Interactive 3D View Paper Models of Polyhedra Unfolder for Blender Unfolding package for Mathematica
17.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does
18.
Regular polygon
–
In Euclidean geometry, a regular polygon is a polygon that is equiangular and equilateral. Regular polygons may be convex or star, in the limit, a sequence of regular polygons with an increasing number of sides becomes a circle, if the perimeter is fixed, or a regular apeirogon, if the edge length is fixed. These properties apply to all regular polygons, whether convex or star, a regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle and that is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has a circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon, a regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. The symmetry group of a regular polygon is dihedral group Dn, D2, D3. It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center, if n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all pass through a vertex. All regular simple polygons are convex and those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol, for n <3 we have two degenerate cases, Monogon, degenerate in ordinary space. Digon, a line segment, degenerate in ordinary space. In certain contexts all the polygons considered will be regular, in such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular, for n >2 the number of diagonals is n 2, i. e.0,2,5,9. for a triangle, square, pentagon, hexagon. The diagonals divide the polygon into 1,4,11,24, for a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices equals n. For a regular simple n-gon with circumradius R and distances di from a point in the plane to the vertices. For a regular n-gon, the sum of the distances from any interior point to the n sides is n times the apothem. This is a generalization of Vivianis theorem for the n=3 case, the sum of the perpendiculars from a regular n-gons vertices to any line tangent to the circumcircle equals n times the circumradius
19.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2
20.
Space diagonal
–
In geometry a space diagonal of a polyhedron is a line connecting two vertices that are not on the same face. Space diagonals contrast with face diagonals, which connect vertices on the face as each other. An axial diagonal is a diagonal that passes through the center of a polyhedron. For example, in a cube with edge length a, all four space diagonals are axial diagonals, more generally, a cuboid with edge lengths a, b, and c has all four space diagonals axial, with common length a 2 + b 2 + c 2. A regular octahedron has 3 axial diagonals, of length a 2, a regular icosahedron has 6 axial diagonals of length a 1 + φ2, where φ is the golden ratio /2. For the cube to be considered magic, these four lines must sum correctly, the word triagonal is derived from the fact that as a variable point travels down the line, three coordinates change. The equivalent in a square is diagonal, because two coordinates change, in a tesseract it is quadragonal because 4 coordinates change, etc. This section applies particularly to magic hypercubes, the magic hypercube community has started to recognize an abbreviated expression for these space diagonals. By using r as a variable to describe the various agonals, If r =2 then we have a diagonal. 3 coordinates change 4 = a quadragonal,4 coordinates change n = the dimension of the hypercube, the 2n-1 agonals are required to sum correctly for the hypercube to be considered magic. By extension, if r =1, the line is parallel to a face, a 1-agonal may be called a monagonal, in keeping with a diagonal, a triagonal, etc. Lines parallel to the faces of the hypercube have, in the past, because the prefix pan indicates all, we can concisely state the characteristics or a magic hypercube. For example, If pan-r-agonals sum correctly for r =1 and 2, If pan-r-agonals sum correctly for r =1 and 3, we have a pantriagonal magic cube. If the r-agonals sum correctly for r =1 and n, the length of an r-agonal of a hypercube with side length a is a r. Face diagonal Magic cube Magic hypercube Magic cube classes Hypotenuse John R. Hendricks, The Pan-3-Agonal Magic Cube, Journal of Recreational Mathematics 5,1,1972, unsolved Problems in Number Theory, 2nd ed. New York, Springer-Verlag, p.173,1994, mathWorld. de Winkel Magic Encyclopedia Heinz - Basic cube parts John Hendricks Hypercubes
21.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0
22.
Tangent
–
In geometry, the tangent line to a plane curve at a given point is the straight line that just touches the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve, a similar definition applies to space curves and curves in n-dimensional Euclidean space. Similarly, the tangent plane to a surface at a point is the plane that just touches the surface at that point. The concept of a tangent is one of the most fundamental notions in geometry and has been extensively generalized. The word tangent comes from the Latin tangere, to touch, euclid makes several references to the tangent to a circle in book III of the Elements. In Apollonius work Conics he defines a tangent as being a line such that no other straight line could fall between it and the curve, archimedes found the tangent to an Archimedean spiral by considering the path of a point moving along the curve. Independently Descartes used his method of normals based on the observation that the radius of a circle is always normal to the circle itself and these methods led to the development of differential calculus in the 17th century. Many people contributed, Roberval discovered a method of drawing tangents. René-François de Sluse and Johannes Hudde found algebraic algorithms for finding tangents, further developments included those of John Wallis and Isaac Barrow, leading to the theory of Isaac Newton and Gottfried Leibniz. An 1828 definition of a tangent was a line which touches a curve. This old definition prevents inflection points from having any tangent and it has been dismissed and the modern definitions are equivalent to those of Leibniz who defined the tangent line as the line through a pair of infinitely close points on the curve. The tangent at A is the limit when point B approximates or tends to A, the existence and uniqueness of the tangent line depends on a certain type of mathematical smoothness, known as differentiability. At most points, the tangent touches the curve without crossing it, a point where the tangent crosses the curve is called an inflection point. Circles, parabolas, hyperbolas and ellipses do not have any point, but more complicated curves do have, like the graph of a cubic function. Conversely, it may happen that the curve lies entirely on one side of a line passing through a point on it. This is the case, for example, for a passing through the vertex of a triangle. In convex geometry, such lines are called supporting lines, the geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century, suppose that a curve is given as the graph of a function, y = f
23.
Golden ratio
–
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship, expressed algebraically, for quantities a and b with a > b >0, a + b a = a b = def φ, where the Greek letter phi represents the golden ratio. Its value is, φ =1 +52 =1.6180339887 …, A001622 The golden ratio is also called the golden mean or golden section. Other names include extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, the golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other plant parts. The golden ratio has also used to analyze the proportions of natural objects as well as man-made systems such as financial markets. Two quantities a and b are said to be in the golden ratio φ if a + b a = a b = φ, one method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ, a + b a =1 + b a =1 +1 φ, multiplying by φ gives φ +1 = φ2 which can be rearranged to φ2 − φ −1 =0. First, the line segment A B ¯ is about doubled and then the semicircle with the radius A S ¯ around the point S is drawn, now the semicircle is drawn with the radius A B ¯ around the point B. The arising intersection point E corresponds 2 φ, next up, the perpendicular on the line segment A E ¯ from the point D will be establish. The subsequent parallel F S ¯ to the line segment C M ¯, produces, as it were and it is well recognizable, this triangle and the triangle M S C are similar to each other. The hypotenuse F S ¯ has due to the cathetuses S D ¯ =1 and D F ¯ =2 according the Pythagorean theorem, finally, the circle arc is drawn with the radius 5 around the point F. The golden ratio has been claimed to have held a fascination for at least 2,400 years. But the fascination with the Golden Ratio is not confined just to mathematicians, biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics. Ancient Greek mathematicians first studied what we now call the golden ratio because of its frequent appearance in geometry, the division of a line into extreme and mean ratio is important in the geometry of regular pentagrams and pentagons. Euclid explains a construction for cutting a line in extreme and mean ratio, throughout the Elements, several propositions and their proofs employ the golden ratio. The golden ratio is explored in Luca Paciolis book De divina proportione, since the 20th century, the golden ratio has been represented by the Greek letter φ or less commonly by τ. Timeline according to Priya Hemenway, Phidias made the Parthenon statues that seem to embody the golden ratio, plato, in his Timaeus, describes five possible regular solids, some of which are related to the golden ratio
24.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors
25.
Apothem
–
The apothem of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides, the word apothem can also refer to the length of that line segment. Regular polygons are the polygons that have apothems. Because of this, all the apothems in a polygon will be congruent. For a regular pyramid, which is a pyramid base is a regular polygon, the apothem is the slant height of a lateral face, that is. For a truncated pyramid, the apothem is the height of a trapezoidal lateral face. An apothem of a polygon will always be a radius of the inscribed circle. It is also the distance between any side of the polygon and its center. A = p a 2 = r 2 = π r 2 The apothem of a regular polygon can be multiple ways. The apothem a of a regular n-sided polygon with side length s, or circumradius R, can be using the following formula. The apothem can also be found by a = s 2 tan and these formulae can still be used even if only the perimeter p and the number of sides n are known because s = p n. Circumradius of a regular polygon Sagitta Chord Apothem of a regular polygon With interactive animation Apothem of pyramid or truncated pyramid Pegg, Jr. Ed
26.
Volume
–
Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance or shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre, three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, Volumes of a complicated shape can be calculated by integral calculus if a formula exists for the shapes boundary. Where a variance in shape and volume occurs, such as those that exist between different human beings, these can be calculated using techniques such as the Body Volume Index. One-dimensional figures and two-dimensional shapes are assigned zero volume in the three-dimensional space, the volume of a solid can be determined by fluid displacement. Displacement of liquid can also be used to determine the volume of a gas, the combined volume of two substances is usually greater than the volume of one of the substances. However, sometimes one substance dissolves in the other and the volume is not additive. In differential geometry, volume is expressed by means of the volume form, in thermodynamics, volume is a fundamental parameter, and is a conjugate variable to pressure. Any unit of length gives a unit of volume, the volume of a cube whose sides have the given length. For example, a cubic centimetre is the volume of a cube whose sides are one centimetre in length, in the International System of Units, the standard unit of volume is the cubic metre. The metric system also includes the litre as a unit of volume, thus 1 litre =3 =1000 cubic centimetres =0.001 cubic metres, so 1 cubic metre =1000 litres. Small amounts of liquid are often measured in millilitres, where 1 millilitre =0.001 litres =1 cubic centimetre. Capacity is defined by the Oxford English Dictionary as the applied to the content of a vessel, and to liquids, grain, or the like. Capacity is not identical in meaning to volume, though closely related, Units of capacity are the SI litre and its derived units, and Imperial units such as gill, pint, gallon, and others. Units of volume are the cubes of units of length, in SI the units of volume and capacity are closely related, one litre is exactly 1 cubic decimetre, the capacity of a cube with a 10 cm side. In other systems the conversion is not trivial, the capacity of a fuel tank is rarely stated in cubic feet, for example. The density of an object is defined as the ratio of the mass to the volume, the inverse of density is specific volume which is defined as volume divided by mass. Specific volume is an important in thermodynamics where the volume of a working fluid is often an important parameter of a system being studied
27.
Projection (linear algebra)
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
28.
Coxeter element
–
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. Note that this assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple classes of Coxeter elements. There are many different ways to define the Coxeter number h of a root system. A Coxeter element is a product of all simple reflections, the product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. The Coxeter number is the number of roots divided by the rank, the number of reflections in the Coxeter group is half the number of roots. The Coxeter number is the order of any Coxeter element, if the highest root is ∑miαi for simple roots αi, then the Coxeter number is 1 + ∑mi The dimension of the corresponding Lie algebra is n, where n is the rank and h is the Coxeter number. The Coxeter number is the highest degree of an invariant of the Coxeter group acting on polynomials. Notice that if m is a degree of a fundamental invariant then so is h +2 − m, the eigenvalues of a Coxeter element are the numbers e2πi/h as m runs through the degrees of the fundamental invariants. Since this starts with m =2, these include the primitive hth root of unity, ζh = e2πi/h, an example, has h=30, so 64*30/g =12 -3 -6 -5 + 4/3 + 4/5 = 2/15, so g = 1920*15/2= 960*15 =14400. Coxeter elements of A n −1 ≅ S n, considered as the group on n elements, are n-cycles, for simple reflections the adjacent transpositions, …. The dihedral group Dihm is generated by two reflections that form an angle of 2 π /2 m, and thus their product is a rotation by 2 π / m. For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h and this is called the Coxeter plane and is the plane on which P has eigenvalues e2πi/h and e−2πi/h = e2πi/h. This plane was first systematically studied in, and subsequently used in to provide uniform proofs about properties of Coxeter elements, for polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids, in three dimensions, the symmetry of a regular polyhedron, with one directed petrie polygon marked, defined as a composite of 3 reflections, has rotoinversion symmetry Sh, order h. Adding a mirror, the symmetry can be doubled to symmetry, Dhd. In orthogonal 2D projection, this becomes dihedral symmetry, Dihh, in four dimension, the symmetry of a regular polychoron, with one directed petrie polygon marked is a double rotation, defined as a composite of 4 reflections, with symmetry +1/h, order h. In five dimension, the symmetry of a regular polyteron, with one directed petrie polygon marked, is represented by the composite of 5 reflections
29.
Perspective (graphical)
–
Perspective in the graphic arts is an approximate representation, on a flat surface, of an image as it is seen by the eye. If viewed from the spot as the windowpane was painted. Each painted object in the scene is thus a flat, scaled down version of the object on the side of the window. All perspective drawings assume the viewer is a distance away from the drawing. Objects are scaled relative to that viewer, an object is often not scaled evenly, a circle often appears as an ellipse and a square can appear as a trapezoid. This distortion is referred to as foreshortening, Perspective drawings have a horizon line, which is often implied. This line, directly opposite the viewers eye, represents objects infinitely far away and they have shrunk, in the distance, to the infinitesimal thickness of a line. It is analogous to the Earths horizon, any perspective representation of a scene that includes parallel lines has one or more vanishing points in a perspective drawing. A one-point perspective drawing means that the drawing has a vanishing point, usually directly opposite the viewers eye. All lines parallel with the line of sight recede to the horizon towards this vanishing point. This is the standard receding railroad tracks phenomenon, a two-point drawing would have lines parallel to two different angles. Any number of vanishing points are possible in a drawing, one for each set of lines that are at an angle relative to the plane of the drawing. Perspectives consisting of parallel lines are observed most often when drawing architecture. In contrast, natural scenes often do not have any sets of parallel lines, the only method to indicate the relative position of elements in the composition was by overlapping, of which much use is made in works like the Parthenon Marbles. Chinese artists made use of perspective from the first or second century until the 18th century. It is not certain how they came to use the technique, some authorities suggest that the Chinese acquired the technique from India, oblique projection is also seen in Japanese art, such as in the Ukiyo-e paintings of Torii Kiyonaga. This was detailed within Aristotles Poetics as skenographia, using flat panels on a stage to give the illusion of depth, the philosophers Anaxagoras and Democritus worked out geometric theories of perspective for use with skenographia. Alcibiades had paintings in his house designed using skenographia, so this art was not confined merely to the stage, Euclids Optics introduced a mathematical theory of perspective, but there is some debate over the extent to which Euclids perspective coincides with the modern mathematical definition
30.
Schlegel diagram
–
In geometry, a Schlegel diagram is a projection of a polytope from R d into R d −1 through a point beyond one of its facets or faces. The resulting entity is a subdivision of the facet in R d −1 that is combinatorially equivalent to the original polytope. Named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes, in dimensions 3 and 4, a Schlegel diagram is a projection of a polyhedron into a plane figure and a projection of a 4-polytope to 3-space, respectively. As such, Schlegel diagrams are used as a means of visualizing four-dimensional polytopes. The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows, if it is projected from any external point, since each ray cuts it twice, it will be represented by a polygonal area divided twice over into polygons. It is always possible by suitable choice of the centre of projection to make the projection of one face completely contain the projections of all the other faces and this is called a Schlegel diagram of the polyhedron. The Schlegel diagram completely represents the morphology of the polyhedron, Sommerville also considers the case of a simplex in four dimensions, The Schlegel diagram of simplex in S4 is a tetrahedron divided into four tetrahedra. More generally, a polytope in n-dimensions has a Schegel diagram constructed by a perspective projection viewed from a point outside of the polytope, all vertices and edges of the polytope are projected onto a hyperplane of that facet. If the polytope is convex, a point near the facet will exist which maps the facet outside, and all other facets inside, so no edges need to cross in the projection. Net – A different approach for visualization by lowering the dimension of a polytope is to build a net, disconnecting facets and this maintains the geometric scale and shape, but makes the topological connections harder to see. Victor Schlegel Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta, Ksl, deutsche Akademie der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann & Sohn in Dresden, Victor Schlegel Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper, Waren. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Grünbaum, Branko, Kaibel, Volker, Klee, Victor, convex polytopes, New York & London, Springer-Verlag, ISBN 0-387-00424-6. George W. Hart, 4D Polytope Projection Models by 3D Printing Nrich maths – for the teenager
31.
Stereographic projection
–
In geometry, the stereographic projection is a particular mapping that projects a sphere onto a plane. The projection is defined on the sphere, except at one point. Where it is defined, the mapping is smooth and bijective and it is conformal, meaning that it preserves angles. It is neither isometric nor area-preserving, that is, it preserves neither distances nor the areas of figures, intuitively, then, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. In practice, the projection is carried out by computer or by using a special kind of graph paper called a stereographic net, shortened to stereonet. The stereographic projection was known to Hipparchus, Ptolemy and probably earlier to the Egyptians and it was originally known as the planisphere projection. Planisphaerium by Ptolemy is the oldest surviving document that describes it, one of its most important uses was the representation of celestial charts. The term planisphere is still used to refer to such charts, in the 16th and 17th century, the equatorial aspect of the stereographic projection was commonly used for maps of the Eastern and Western Hemispheres. It is believed that already the map created in 1507 by Gualterius Lud was in stereographic projection, as were later the maps of Jean Roze, Rumold Mercator, in star charts, even this equatorial aspect had been utilised already by the ancient astronomers like Ptolemy. François dAguilon gave the stereographic projection its current name in his 1613 work Opticorum libri sex philosophis juxta ac mathematicis utiles, in 1695, Edmond Halley, motivated by his interest in star charts, published the first mathematical proof that this map is conformal. He used the recently established tools of calculus, invented by his friend Isaac Newton and this section focuses on the projection of the unit sphere from the north pole onto the plane through the equator. Other formulations are treated in later sections, the unit sphere in three-dimensional space R3 is the set of points such that x2 + y2 + z2 =1. Let N = be the pole, and let M be the rest of the sphere. The plane z =0 runs through the center of the sphere, for any point P on M, there is a unique line through N and P, and this line intersects the plane z =0 in exactly one point P′. Define the stereographic projection of P to be this point P′ in the plane, in Cartesian coordinates on the sphere and on the plane, the projection and its inverse are given by the formulas =, =. In spherical coordinates on the sphere and polar coordinates on the plane, here, φ is understood to have value π when R =0. Also, there are ways to rewrite these formulas using trigonometric identities. In cylindrical coordinates on the sphere and polar coordinates on the plane, the projection is not defined at the projection point N =
32.
Spherical polyhedron
–
In mathematics, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of polyhedra is most conveniently derived in this way. The most familiar spherical polyhedron is the ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the ball, thought of as a hosohedron. Some improper polyhedra, such as the hosohedra and their duals the dihedra, in the examples below, is a hosohedron and is the dual dihedron. The first known man-made polyhedra are spherical polyhedra carved in stone, many have been found in Scotland, and appear to date from the neolithic period. During the European Dark Age, the Islamic scholar Abū al-Wafā Būzjānī wrote the first serious study of spherical polyhedra, two hundred years ago, at the start of the 19th Century, Poinsot used spherical polyhedra to discover the four regular star polyhedra. In the middle of the 20th Century, Coxeter used them to all but one of the uniform polyhedra. All the regular, semiregular polyhedra and their duals can be projected onto the sphere as tilings, given by their Schläfli symbol or vertex figure a. b. c. Spherical tilings allow cases that polyhedra do not, namely the hosohedra, regular figures as, and dihedra, regular figures as
33.
120-cell
–
In geometry, the 120-cell is the convex regular 4-polytope with Schläfli symbol. It is also called a C120, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid, the boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. It can be thought of as the 4-dimensional analog of the dodecahedron and has called a dodecaplex. Just as a dodecahedron can be built up as a model with 12 pentagons,3 around each vertex, there are 120 cells,720 pentagonal faces,1200 edges, and 600 vertices. There are 4 dodecahedra,6 pentagons, and 4 edges meeting at every vertex, there are 3 dodecahedra and 3 pentagons meeting every edge. The dual polytope of the 120-cell is the 600-cell, the vertex figure of the 120-cell is a tetrahedron. The dihedral angle of the 120-cell is 144° The 600 vertices of the 120-cell include all permutations of, the 120-cell consists of 120 dodecahedral cells. For visualization purposes, it is convenient that the dodecahedron has opposing parallel faces, one can stack dodecahedrons face to face in a straight line bent in the 4th direction into a great circle with a circumference of 10 cells. Starting from this initial ten cell construct there are two common visualizations one can use, a stereographic projection, and a structure of intertwining rings. The cell locations lend themselves to a hyperspherical description, pick an arbitrary cell and label it the North Pole. Twelve great circle meridians radiate out in 3 dimensions, converging at the 5th South Pole cell and this skeleton accounts for 50 of the 120 cells. Starting at the North Pole, we can build up the 120-cell in 9 latitudinal layers, with the exception of the poles, each layer represents a separate 2-sphere, with the equator being a great 2-sphere. The centroids of the 30 equatorial cells form the vertices of an icosidodecahedron, the cells labeled interstitial in the following table do not fall on meridian great circles. Layers 2,4,6 and 8 cells are located over the cells faces. Layers 3 and 7s cells are located directly over the pole cells vertices, layer 5s cells are located over the pole cells edges. The 120-cell can be partitioned into 12 disjoint 10-cell great circle rings, starting with one 10-cell ring, one can place another ring alongside it that spirals around the original ring one complete revolution in ten cells. Five such 10-cell rings can be placed adjacent to the original 10-cell ring, although the outer rings spiral around the inner ring, they actually have no helical torsion. The spiraling is a result of the 3-sphere curvature, the inner ring and the five outer rings now form a six ring, 60-cell solid torus
34.
Spherical tiling
–
In mathematics, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of polyhedra is most conveniently derived in this way. The most familiar spherical polyhedron is the ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the ball, thought of as a hosohedron. Some improper polyhedra, such as the hosohedra and their duals the dihedra, in the examples below, is a hosohedron and is the dual dihedron. The first known man-made polyhedra are spherical polyhedra carved in stone, many have been found in Scotland, and appear to date from the neolithic period. During the European Dark Age, the Islamic scholar Abū al-Wafā Būzjānī wrote the first serious study of spherical polyhedra, two hundred years ago, at the start of the 19th Century, Poinsot used spherical polyhedra to discover the four regular star polyhedra. In the middle of the 20th Century, Coxeter used them to all but one of the uniform polyhedra. All the regular, semiregular polyhedra and their duals can be projected onto the sphere as tilings, given by their Schläfli symbol or vertex figure a. b. c. Spherical tilings allow cases that polyhedra do not, namely the hosohedra, regular figures as, and dihedra, regular figures as
35.
Cartesian coordinates
–
Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair. The coordinates can also be defined as the positions of the projections of the point onto the two axis, expressed as signed distances from the origin. One can use the principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes. In general, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n and these coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes. The invention of Cartesian coordinates in the 17th century by René Descartes revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes can be described by Cartesian equations, algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, a familiar example is the concept of the graph of a function. Cartesian coordinates are also tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering. They are the most common system used in computer graphics, computer-aided geometric design. Nicole Oresme, a French cleric and friend of the Dauphin of the 14th Century, used similar to Cartesian coordinates well before the time of Descartes. The adjective Cartesian refers to the French mathematician and philosopher René Descartes who published this idea in 1637 and it was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. Both authors used a single axis in their treatments and have a length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes La Géométrie was translated into Latin in 1649 by Frans van Schooten and these commentators introduced several concepts while trying to clarify the ideas contained in Descartes work. Many other coordinate systems have developed since Descartes, such as the polar coordinates for the plane. The development of the Cartesian coordinate system would play a role in the development of the Calculus by Isaac Newton. The two-coordinate description of the plane was later generalized into the concept of vector spaces. Choosing a Cartesian coordinate system for a one-dimensional space – that is, for a straight line—involves choosing a point O of the line, a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative, we say that the line is oriented from the negative half towards the positive half
36.
Inverse trigonometric functions
–
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry. There are several notations used for the trigonometric functions. The most common convention is to name inverse trigonometric functions using a prefix, e. g. arcsin, arccos, arctan. This convention is used throughout the article, when measuring in radians, an angle of θ radians will correspond to an arc whose length is rθ, where r is the radius of the circle. Similarly, in programming languages the inverse trigonometric functions are usually called asin, acos. The notations sin−1, cos−1, tan−1, etc, the confusion is somewhat ameliorated by the fact that each of the reciprocal trigonometric functions has its own name—for example, −1 = sec. Nevertheless, certain authors advise against using it for its ambiguity, since none of the six trigonometric functions are one-to-one, they are restricted in order to have inverse functions. There are multiple numbers y such that sin = x, for example, sin =0, when only one value is desired, the function may be restricted to its principal branch. With this restriction, for x in the domain the expression arcsin will evaluate only to a single value. These properties apply to all the trigonometric functions. The principal inverses are listed in the following table, if x is allowed to be a complex number, then the range of y applies only to its real part. Trigonometric functions of trigonometric functions are tabulated below. This is derived from the tangent addition formula tan = tan + tan 1 − tan tan , like the sine and cosine functions, the inverse trigonometric functions can be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative,11 − z 2, as a binomial series, the series for arctangent can similarly be derived by expanding its derivative 11 + z 2 in a geometric series and applying the integral definition above. Arcsin = z + z 33 + z 55 + z 77 + ⋯ = ∑ n =0 ∞, for example, arccos x = π /2 − arcsin x, arccsc x = arcsin , and so on. Alternatively, this can be expressed, arctan z = ∑ n =0 ∞22 n 2. There are two cuts, from −i to the point at infinity, going down the imaginary axis and it works best for real numbers running from −1 to 1
37.
Truncated trapezohedron
–
An n-gonal truncated trapezohedron is a polyhedron formed by a n-gonal trapezohedron with n-gonal pyramids truncated from its two polar axis vertices. If the polar vertices are truncated, a trapezohedron becomes an antiprism. The vertices exist as 4 n-gons in four planes, with alternating orientation in the middle creating the pentagons. The regular dodecahedron is the most common polyhedron in this class, being a platonic solid, a truncated trapezohedron has all vertices with 3 faces. This means that the dual polyhedra, the set of gyroelongated dipyramids, have all triangular faces, for example, the icosahedron is the dual of the dodecahedron. Truncated n-gonal trapezohedron – 2n pentagons,2 n-gons, dual gyroelongated dipyramids Diminished trapezohedron Conway Notation for Polyhedra Try, tndAn, where n=4,5,6
38.
Pentagonal trapezohedron
–
The pentagonal trapezohedron or deltohedron is the third in an infinite series of face-transitive polyhedra which are dual polyhedra to the antiprisms. It has ten faces which are congruent kites and it can be decomposed into two pentagonal pyramids and a pentagonal antiprism in the middle. It can also be decomposed into two pentagonal pyramids and a dodecahedron in the middle, the pentagonal trapezohedron was patented for use as a gaming die in 1906. Subsequent patents on ten-sided dice have made minor refinements to the design by rounding or truncating the edges. This enables the die to tumble so that the outcome is less predictable, one such refinement became notorious at the 1980 Gen Con when the patent was incorrectly thought to cover ten-sided dice in general. Ten-sided dice are commonly numbered from 0 to 9, as this allows two to be rolled in order to obtain a percentile result. Where one die represents the tens, the other represents units therefore a result of 7 on the former and 0 on the latter would be combined to produce 70, a result of double-zero is commonly interpreted as 100. Ten-sided dice may also be numbered 1 to 10 for use in games where a number in this range is desirable. A fairly consistent arrangement of the faces on ten-digit dice has been observed, the even and odd digits are divided among the two opposing caps of the die, and each pair of opposite faces adds to nine. When casting a 10-sided die, if numbered from 0-9, two are used to obtain a percentage roll. Rolling 2 of these are attributed in the results 00-99, where 00 can be viewed as a 100 as the result in some games. Alone casting a 0-9 ten sided dice, the 0 face is valued at 10, cundy H. M and Rollett, A. P. Mathematical models, 2nd Edn. Oxford University Press, p.117 Generalized formula of uniform polyhedron having 2n congruent right kite faces from Academia. edu Weisstein, virtual Reality Polyhedra www. georgehart. com, The Encyclopedia of Polyhedra VRML model Conway Notation for Polyhedra Try, dA5
39.
Stellation
–
In geometry, stellation is the process of extending a polygon, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. The new figure is a stellation of the original, the word stellation comes from the Latin stellātus, starred, which in turn comes from Latin stella, star. In 1619 Kepler defined stellation for polygons and polyhedra, as the process of extending edges or faces until they meet to form a new polygon or polyhedron and he stellated the regular dodecahedron to obtain two regular star polyhedra, the small stellated dodecahedron and great stellated dodecahedron. He also stellated the regular octahedron to obtain the stella octangula, stellating a regular polygon symmetrically creates a regular star polygon or polygonal compound. These polygons are characterised by the number of times m that the polygonal boundary winds around the centre of the figure, like all regular polygons, their vertices lie on a circle. M also corresponds to the number of vertices around the circle to get one end of a given edge to the other. A regular star polygon is represented by its Schläfli symbol, where n is the number of vertices, m is the used in sequencing the edges around it. Making m =1 gives the convex, if n and m do have a common divisor, then the figure is a regular compound. For example is the compound of two triangles or hexagram, while is a compound of two pentagrams. Some authors use the Schläfli symbol for such regular compounds, others regard the symbol as indicating a single path which is wound m times around n/m vertex points, such that one edge is superimposed upon another and each vertex point is visited m times. In this case a modified symbol may be used for the compound, a regular n-gon has /2 stellations if n is even, and /2 stellations if n is odd. Like the heptagon, the octagon also has two octagrammic stellations, one, being a star polygon, and the other, being the compound of two squares. A polyhedron is stellated by extending the edges or face planes of a polyhedron until they meet again to form a new polyhedron or compound, the interior of the new polyhedron is divided by the faces into a number of cells. The face planes of a polyhedron may divide space into many such cells, for a symmetrical polyhedron, these cells will fall into groups, or sets, of congruent cells - we say that the cells in such a congruent set are of the same type. A common method of finding stellations involves selecting one or more cell types and this can lead to a huge number of possible forms, so further criteria are often imposed to reduce the set to those stellations that are significant and unique in some way. A set of cells forming a layer around its core is called a shell. For a symmetrical polyhedron, a shell may be made up of one or more cell types, based on such ideas, several restrictive categories of interest have been identified. Adding successive shells to the core leads to the set of main-line stellations
40.
Rectification (geometry)
–
In Euclidean geometry, rectification or complete-truncation is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the facets of the original polytope. A rectification operator is denoted by the symbol r, for example, r is the rectified cube. Conway polyhedron notation uses ambo for this operator, in graph theory this operation creates a medial graph. Rectification is the point of a truncation process. The highest degree of rectification creates the dual polytope, a rectification truncates edges to points. A birectification truncates faces to points, a trirectification truncates cells to points, and so on. New vertices are placed at the center of the edges of the original polygon, each platonic solid and its dual have the same rectified polyhedron. The rectified polyhedron turns out to be expressible as the intersection of the original platonic solid with an appropriated scaled concentric version of its dual, the rectified octahedron, whose dual is the cube, is the cuboctahedron. The rectified icosahedron, whose dual is the dodecahedron, is the icosidodecahedron, a rectified square tiling is a square tiling. A rectified triangular tiling or hexagonal tiling is a trihexagonal tiling, examples If a polyhedron is not regular, the edge midpoints surrounding a vertex may not be coplanar. The resulting medial graph remains polyhedral, so by Steinitzs theorem it can be represented as a polyhedron, the Conway polyhedron notation equivalent to rectification is ambo, represented by a. Applying twice aa, is Conways expand operation, e, which is the same as Johnsons cantellation operation, t0,2 generated from regular polyhedral, each Convex regular 4-polytope has a rectified form as a uniform 4-polytope. Its rectification will have two types, a rectified polyhedron left from the original cells and polyhedron as new cells formed by each truncated vertex. A rectified is not the same as a rectified, however, a further truncation, called bitruncation, is symmetric between a 4-polytope and its dual. Examples A first rectification truncates edges down to points, If a polytope is regular, this form is represented by an extended Schläfli symbol notation t1 or r. A second rectification, or birectification, truncates faces down to points, If regular it has notation t2 or 2r. For polyhedra, a birectification creates a dual polyhedron, higher degree rectifications can be constructed for higher dimensional polytopes
41.
Icosidodecahedron
–
In geometry, an icosidodecahedron is a polyhedron with twenty triangular faces and twelve pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly and its dual polyhedron is the rhombic triacontahedron. An icosidodecahedron can be split along any of six planes to form a pair of pentagonal rotundae, the icosidodecahedron can be considered a pentagonal gyrobirotunda, as a combination of two rotundae. In this form its symmetry is D5d, order 20, the wire-frame figure of the icosidodecahedron consists of six flat regular decagons, meeting in pairs at each of the 30 vertices. Convenient Cartesian coordinates for the vertices of an icosidodecahedron with unit edges are given by the permutations of. The icosidodecahedron has four special orthogonal projections, centered on a vertex, an edge, a face. The last two correspond to the A2 and H2 Coxeter planes, the icosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The icosidodecahedron is a dodecahedron and also a rectified icosahedron. With orbifold notation symmetry of all of these tilings are wythoff construction within a fundamental domain of symmetry. The icosidodecahedron is related to the Johnson solid called a pentagonal orthobirotunda created by two pentagonal rotunda connected as mirror images, the icosidodecahedron can therefore be called a pentagonal gyrobirotunda with the gyration between top and bottom halves. Eight uniform star polyhedra share the same vertex arrangement, of these, two also share the same edge arrangement, the small icosihemidodecahedron, and the small dodecahemidodecahedron. The vertex arrangement is shared with the compounds of five octahedra. In four-dimensional geometry the icosidodecahedron appears in the regular 600-cell as the slice that belongs to the vertex-first passage of the 600-cell through 3D space. In other words, the 30 vertices of the 600-cell which lie at arc distances of 90 degrees on its circumscribed hypersphere from a pair of vertices, are the vertices of an icosidodecahedron. The wire frame figure of the 600-cell consists of 72 flat regular decagons, six of these are the equatorial decagons to a pair of opposite vertices. They are precisely the six decagons which form the wire frame figure of the icosidodecahedron, in the mathematical field of graph theory, a icosidodecahedral graph is the graph of vertices and edges of the icosidodecahedron, one of the Archimedean solids
42.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
43.
Alternating group
–
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the group of degree n, or the alternating group on n letters. For n >1, the group An is the subgroup of the symmetric group Sn with index 2 and has therefore n. It is the kernel of the signature group homomorphism sgn. The group An is abelian if and only if n ≤3 and simple if, a5 is the smallest non-abelian simple group, having order 60, and the smallest non-solvable group. The group A4 has a Klein four-group V as a normal subgroup, namely the identity and the double transpositions. As in the group, the conjugacy classes in An consist of elements with the same cycle shape. Examples, The two permutations and are not conjugates in A3, although they have the same cycle shape, the permutation is not conjugate to its inverse in A8, although the two permutations have the same cycle shape, so they are conjugate in S8. An is generated by 3-cycles, since 3-cycles can be obtained by combining pairs of transpositions and this generating set is often used to prove that An is simple for n ≥5. For n =1 and 2, the group is trivial. For n =3 the automorphism group is Z2, with trivial inner automorphism group, the outer automorphism group of A6 is the Klein four-group V = Z2 × Z2, and is related to the outer automorphism of S6. The extra outer automorphism in A6 swaps the 3-cycles with elements of shape 32, there are some exceptional isomorphisms between some of the small alternating groups and small groups of Lie type, particularly projective special linear groups. These are, A4 is isomorphic to PSL2 and the group of chiral tetrahedral symmetry. A5 is isomorphic to PSL2, PSL2, and the group of chiral icosahedral symmetry. A6 is isomorphic to PSL2 and PSp4, more obviously, A3 is isomorphic to the cyclic group Z3, and A0, A1, and A2 are isomorphic to the trivial group. A subgroup of three elements with any additional element generates the whole group, for all n ≠4, An has no nontrivial normal subgroups. Thus, An is a group for all n ≠4. A5 is the smallest non-solvable group, the group homology of the alternating groups exhibits stabilization, as in stable homotopy theory, for sufficiently large n, it is constant. However, there are some low-dimensional exceptional homology, note that the homology of the symmetric group exhibits similar stabilization, but without the low-dimensional exceptions