1.
Archimedean solid
–
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the semi-regular convex polyhedrons composed of regular meeting in identical vertices, excluding the 5 Platonic solids. They differ from the Johnson solids, whose regular polygonal faces do not meet in identical vertices, identical vertices means that for any two vertices, there is a global isometry of the entire solid that takes one vertex to the other. Excluding these two families, there are 13 Archimedean solids. All the Archimedan solids can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry, the Archimedean solids take their name from Archimedes, who discussed them in a now-lost work. Pappus refers to it, stating that Archimedes listed 13 polyhedra, kepler may have also found the elongated square gyrobicupola, at least, he once stated that there were 14 Archimedean solids. However, his published enumeration only includes the 13 uniform polyhedra, here the vertex configuration refers to the type of regular polygons that meet at any given vertex. For example, a configuration of means that a square, hexagon. Some definitions of semiregular polyhedron include one more figure, the square gyrobicupola or pseudo-rhombicuboctahedron. The number of vertices is 720° divided by the angle defect. The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular, the duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra, these are the face-uniform solids with regular vertices, the snub cube and snub dodecahedron are known as chiral, as they come in a left-handed form and right-handed form. When something comes in forms which are each others three-dimensional mirror image. The different Archimedean and Platonic solids can be related to each other using a handful of general constructions, starting with a Platonic solid, truncation involves cutting away of corners. To preserve symmetry, the cut is in a perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners. Depending on how much is truncated, different Platonic and Archimedean solids can be created, expansion or cantellation involves moving each face away from the center and taking the convex hull. Expansion with twisting also involves rotating the faces, thus breaking the rectangles corresponding to edges into triangles, the last construction we use here is truncation of both corners and edges. Ignoring scaling, expansion can also be viewed as truncation of corners and edges, note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron
2.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two
3.
Euler characteristic
–
It is commonly denoted by χ. The Euler characteristic was originally defined for polyhedra and used to prove theorems about them. Leonhard Euler, for whom the concept is named, was responsible for much of early work. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, any convex polyhedrons surface has Euler characteristic V − E + F =2. This equation is known as Eulers polyhedron formula and it corresponds to the Euler characteristic of the sphere, and applies identically to spherical polyhedra. An illustration of the formula on some polyhedra is given below and this version holds both for convex polyhedra and the non-convex Kepler-Poinsot polyhedra. Projective polyhedra all have Euler characteristic 1, like the real plane, while the surfaces of toroidal polyhedra all have Euler characteristic 0. The Euler characteristic can be defined for connected plane graphs by the same V − E + F formula as for polyhedral surfaces, the Euler characteristic of any plane connected graph G is 2. This is easily proved by induction on the number of determined by G. For trees, E = V −1 and F =1, if G has C components, the same argument by induction on F shows that V − E + F − C =1. One of the few graph theory papers of Cauchy also proves this result, via stereographic projection the plane maps to the two-dimensional sphere, such that a connected graph maps to a polygonal decomposition of the sphere, which has Euler characteristic 2. This viewpoint is implicit in Cauchys proof of Eulers formula given below, there are many proofs of Eulers formula. One was given by Cauchy in 1811, as follows and it applies to any convex polyhedron, and more generally to any polyhedron whose boundary is topologically equivalent to a sphere and whose faces are topologically equivalent to disks. Remove one face of the polyhedral surface, after this deformation, the regular faces are generally not regular anymore. The number of vertices and edges has remained the same, therefore, proving Eulers formula for the polyhedron reduces to proving V − E + F =1 for this deformed, planar object. If there is a face more than three sides, draw a diagonal—that is, a curve through the face connecting two vertices that arent connected yet. This adds one edge and one face and does not change the number of vertices, continue adding edges in this manner until all of the faces are triangular. This decreases the number of edges and faces by one each and does not change the number of vertices, remove a triangle with two edges shared by the exterior of the network, as illustrated by the third graph
4.
Conway polyhedron notation
–
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation defined by Kepler, the basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example tC represents a cube, and taC, parsed as t, is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a cube is an octahedron. Applied in a series, these allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology, while exact geometry is not constrained, the seed polyhedra are the Platonic solids, represented by the first letter of their name, the prisms for n-gonal forms, antiprisms, cupolae and pyramids. Any polyhedron can serve as a seed, as long as the operations can be executed on it, for example regular-faced Johnson solids can be referenced as Jn, for n=1.92. In general, it is difficult to predict the appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the operation, aa=e, while a truncation after ambo produces bevel. There has been no general theory describing what polyhedra can be generated in by any set of operators, instead all results have been discovered empirically. Elements are given from the seed to the new forms, assuming seed is a polyhedron, An example image is given for each operation. The basic operations are sufficient to generate the reflective uniform polyhedra, some basic operations can be made as composites of others. Special forms The kis operator has a variation, kn, which only adds pyramids to n-sided faces, the truncate operator has a variation, tn, which only truncates order-n vertices. The operators are applied like functions from right to left, for example, a cuboctahedron is an ambo cube, i. e. t = aC, and a truncated cuboctahedron is t = t = taC. Chirality operator r – reflect – makes the image of the seed. Alternately an overline can be used for picking the other chiral form, the operations are visualized here on cube seed examples, drawn on the surface of the cube, with blue faces that cross original edges, and pink faces that center at original vertices. The first row generates the Archimedean solids and the row the Catalan solids. Comparing each new polyhedron with the cube, each operation can be visually understood, the truncated icosahedron, tI or zD, which is Goldberg polyhedron G, creates more polyhedra which are neither vertex nor face-transitive
5.
Wythoff symbol
–
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra, a Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators, with a slight extension, Wythoffs symbol can be applied to all uniform polyhedra. However, the methods do not lead to all uniform tilings in euclidean or hyperbolic space. In three dimensions, Wythoffs construction begins by choosing a point on the triangle. If the distance of this point from each of the sides is non-zero, a perpendicular line is then dropped between the generator point and every face that it does not lie on. The three numbers in Wythoffs symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, the triangle is also represented with the same numbers, written. In this notation the mirrors are labeled by the reflection-order of the opposite vertex, the p, q, r values are listed before the bar if the corresponding mirror is active. The one impossible symbol | p q r implies the point is on all mirrors. This unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, the resulting figure has rotational symmetry only. The generator point can either be on or off each mirror and this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. A node is circled if the point is not on the mirror. There are seven generator points with each set of p, q, r, | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isnt Wythoff-constructible, There are 4 symmetry classes of reflection on the sphere, and two in the Euclidean plane. A few of the many such patterns in the hyperbolic plane are also listed. The list of Schwarz triangles includes rational numbers, and determine the set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a domain, colored by even. Selected tilings created by the Wythoff construction are given below, for a more complete list, including cases where r ≠2, see List of uniform polyhedra by Schwarz triangle
6.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
7.
Point groups in three dimensions
–
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O, the group of all isometries that leave the origin fixed, or correspondingly, O itself is a subgroup of the Euclidean group E of all isometries. Symmetry groups of objects are isometry groups, accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded 3D object have one or more fixed points. We choose the origin as one of them, the rotation group of an object is equal to its full symmetry group if and only if the object is chiral. Finite Coxeter groups are a set of point groups generated purely by a set of reflectional mirrors passing through the same point. A rank n Coxeter group has n mirrors and is represented by a Coxeter–Dynkin diagram, Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups. SO is a subgroup of E+, which consists of direct isometries, i. e. isometries preserving orientation, it contains those that leave the origin fixed. O is the product of SO and the group generated by inversion. An example would be C4 for H and S4 for M, Thus M is obtained from H by inverting the isometries in H ∖ L. This is clarifying when categorizing isometry groups, see below, in 2D the cyclic group of k-fold rotations Ck is for every positive integer k a normal subgroup of O and SO. Accordingly, in 3D, for every axis the cyclic group of rotations about that axis is a normal subgroup of the group of all rotations about that axis. e. See also the similar overview including translations, when comparing the symmetry type of two objects, the origin is chosen for each separately, i. e. they need not have the same center. Moreover, two objects are considered to be of the symmetry type if their symmetry groups are conjugate subgroups of O. The conjugacy definition would allow a mirror image of the structure, but this is not needed. For example, if a symmetry group contains a 3-fold axis of rotation, there are many infinite isometry groups, for example, the cyclic group generated by a rotation by an irrational number of turns about an axis. We may create non-cyclical abelian groups by adding more rotations around the same axis, there are also non-abelian groups generated by rotations around different axes. They will be infinite unless the rotations are specially chosen, all the infinite groups mentioned so far are not closed as topological subgroups of O
8.
Dihedral angle
–
A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common, in solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimension, a dihedral angle represents the angle between two hyperplanes, a dihedral angle is an angle between two intersecting planes on a third plane perpendicular to the line of intersection. A torsion angle is an example of a dihedral angle. In stereochemistry every set of three atoms of a molecule defines a plane, when two such planes intersect, the angle between them is a dihedral angle. Dihedral angles are used to specify the molecular conformation, stereochemical arrangements corresponding to angles between 0° and ±90° are called syn, those corresponding to angles between ±90° and 180° anti. Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called clinal and those between 0° and ±30° or ±150° and 180° are called periplanar. The synperiplanar conformation is also known as the syn- or cis-conformation, antiperiplanar as anti or trans, for example, with n-butane two planes can be specified in terms of the two central carbon atoms and either of the methyl carbon atoms. The syn-conformation shown above, with an angle of 60° is less stable than the anti-configuration with a dihedral angle of 180°. For macromolecular usage the symbols T, C, G+, G−, A+, a Ramachandran plot, originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure, the figure at right illustrates the definition of the φ and ψ backbone dihedral angles. In a protein chain three dihedral angles are defined as φ, ψ and ω, as shown in the diagram, the planarity of the peptide bond usually restricts ω to be 180° or 0°. The distance between the Cα atoms in the trans and cis isomers is approximately 3.8 and 2.9 Å, the cis isomer is mainly observed in Xaa–Pro peptide bonds. The sidechain dihedral angles tend to cluster near 180°, 60°, and −60°, which are called the trans, gauche+, the stability of certain sidechain dihedral angles is affected by the values φ and ψ. For instance, there are steric interactions between the Cγ of the side chain in the gauche+ rotamer and the backbone nitrogen of the next residue when ψ is near -60°. An alternative method is to calculate the angle between the vectors, nA and nB, which are normal to the planes. Cos φ = − n A ⋅ n B | n A | | n B | where nA · nB is the dot product of the vectors and |nA| |nB| is the product of their lengths. Any plane can also be described by two non-collinear vectors lying in that plane, taking their cross product yields a vector to the plane